Exponential Trajectory Tracking Control of Nonholonomic Wheeled Mobile Robots
Abstract
:1. Introduction
- −
- An exponential trajectory tracking controller for nonholonomic unicycle-type mobile robots is designed.
- −
- Theoretical stability analysis of the dynamic behaviors of the closed-loop system is provided, and an exponential stability result is proven.
- −
- An explicit estimate of the set of feasible initial conditions for the error variables is determined.
- −
- Verification of the proposed tracking controller under different operating conditions using MATLAB/Simulink is given.
2. Preliminaries and Problem Formulation
2.1. Preliminaries
2.2. Problem Formulation
3. Control Design and Stability Analysis
3.1. Control Design
3.2. Stability Analysis
3.2.1. μ-Subsystem
3.2.2. e-Subsystem
3.2.3. (e, )-System
3.2.4. Initial Condition Discussion
4. Simulation Results
4.1. Tracking a Cuvilinear Trajectory
4.1.1. Initial Conditions
4.1.2. Results
4.2. Straight Line Trajectory Tracking
4.2.1. Initial Conditions
4.2.2. Results
4.3. Comparative Simulation
4.3.1. Initial Conditions
4.3.2. Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tsafestas, S.G. Mobile robot control and navigation: A global overview. J. Intel. Rob. Syst. 2018, 91, 35–58. [Google Scholar] [CrossRef]
- Yong, W.; Wei, L.; Gang, W. Simultaneous Tracking and Stabilization of Nonholonomic Wheeled Mobile Robots under Constrained Velocity and Torque. Mathematics 2024, 12, 1985. [Google Scholar] [CrossRef]
- Moreno, J.; Slawinski, E.; Chicaiza, F.; Rossomando, F.; Mut, V.; Moran, M. Design and Analysis of an Input–Output Linearization-Based Trajectory Tracking Controller for Skid-Steering Mobile Robots. Machines 2023, 11, 988. [Google Scholar] [CrossRef]
- Morain, P.; Samson, C. Modeling and control of wheeled mobile robots. In Springer Handbook of Robotics, 2nd ed.; Siciliano, B., Khatib, O., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 1235–1265. [Google Scholar]
- Zhang, Y.; Zhao, X.; Tao, B.; Ding, H. Point stabilization of nonholonomic mobile robot by Bezier smooth subline constraint nonlinear model predictive control. IEEE/ASME Trans. Mechatron. 2021, 26, 990–1001. [Google Scholar] [CrossRef]
- Fabregas, E.; Farias, G.; Aranda-Escolastico, E.; Garcia, G.; Chaos, D.; Dormido-Canto, S.; Dormido, S. Simulation and experimental results of a new control strategy for point stabilization of nonholonomic mobile robots. IEEE Trans. Ind. Electron. 2020, 67, 6679–6687. [Google Scholar] [CrossRef]
- Hung, N.; Rego, F.; Quintas, J.; Cruz, J.; Jacinto, M.; Souto, D.; Potes, A.; Sebastiao, L.; Pascoal, A. A review of path following strategies for autonomous robotic vehicles: Theory, simulations, and experiments. J. Field Rob. 2022, 40, 747–779. [Google Scholar] [CrossRef]
- Hassan, N.; Saleem, A. Analysis of Trajectory Tracking Control Algorithms for Wheeled Mobile Robots. In Proceedings of the 2021 IEEE Industrial Electronics and Applications Conference (IEACon), Penang, Malaysia, 22–23 November 2021. [Google Scholar]
- Wang, Y.; Miao, Z.; Zhong, H.; Pan, Q. Simultaneous stabilization and tracking of nonholonomic robots: A Lyapunov-based approach. IEEE Trans. Contr. Syst. Tech. 2015, 23, 1440–1450. [Google Scholar] [CrossRef]
- Liu, C.; Gao, J.; Hu, D. Lyapunov-based model predictive control for tracking of nonholonomic mobile robots under input constraints. Int. J. Contr. Autom. Syst. 2017, 15, 2313–2319. [Google Scholar] [CrossRef]
- Shahbazzadeh, M.; Sadati, S.J.; Minagar, S. Trajectory tracking control for mobile robots considering position of mass center. Opt. Contr. Appl. 2021, 42, 1542–1555. [Google Scholar] [CrossRef]
- Gulo, S.I.C.; Tamba, T.A.; Wahab, F. Nonlinear path generation and tracking control design for a mobile robot. IFAC PapersOnLine 2023, 56, 9777–9780. [Google Scholar] [CrossRef]
- Gao, H.; Gao, R.; Liang, P.; Zhang, Q.; Deng, R.; Zhu, W. A hybrid tracking control strategy for nonholonomic wheeled mobile robot incorporating deep reinforcement learning approach. IEEE Access 2021, 9, 15592–15602. [Google Scholar] [CrossRef]
- Yang, Q.; Fang, H.; Cao, M.; Chen, J. Distributed trajectory tracking control for multiple nonholonomic mobile robots. IFAC PapersOnLine 2016, 94, 31–36. [Google Scholar] [CrossRef]
- Huang, H.; Gao, J. Backstepping and novel sliding mode trajectory tracking controller for wheeled mobile robots. Mathematics 2024, 12, 1458. [Google Scholar] [CrossRef]
- Mera, M.; Rios, H.; Martinez, E.A. A sliding-mode based controller for trajectory tracking of perturbed unicycle mobile robots. Contr. Eng. Pract. 2020, 102, 104548. [Google Scholar] [CrossRef]
- Cen, H.; Singh, B.K. Nonholonomic wheeled mobile robot trajectory tracking control based on improved sliding mode variable structure. Wire. Comm. Mob. Comp. 2021, 2021, 2974839. [Google Scholar] [CrossRef]
- Rossomando, F.; Soria, C.; Carelli, R. Sliding mode neuro adaptive control in trajectory tracking for mobile robots. J. Intel. Rob. Syst. Theory Appl. 2014, 74, 931–944. [Google Scholar] [CrossRef]
- Hedjar, R. Approximate quadratic programming algorithm for nonlinear model predictive tracking control of a wheeled mobile robot. IEEE Access 2022, 10, 65067–65079. [Google Scholar] [CrossRef]
- Yan, L.; Ma, B.; Jia, Y. Trajectory tracking control of nonholonomic wheeled mobile robots using only measurements for position and velocity. Automatica 2024, 159, 111374. [Google Scholar] [CrossRef]
- Hassan, N.; Saleem, A. Neural network-based adaptive controller for trajectory tracking of wheeled mobile robots. IEEE Access 2023, 10, 13582–13597. [Google Scholar] [CrossRef]
- Zhang, J.; Gong, Q.; Zhang, Y.; Wang, J. Finite-time global trajectory tracking control for uncertain wheeled mobile robots. IEEE Access 2020, 8, 187808–187813. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, G.; Luo, B. Finite-time cascaded tracking control approach for mobile robots. Inf. Sci. 2014, 284, 31–43. [Google Scholar] [CrossRef]
- Ding, S.; Zheng, W. Global stabilization of a class of generalized cascaded systems by homogeneous method. Int. J. Contr. 2015, 89, 815–832. [Google Scholar] [CrossRef]
- Zhao, T.; Wang, Y.; Li, G.; Hou, G. Lyapunov based global trajectory tracking control of wheeled mobile robot. J. Phys. Conf. Ser. 2023, 2478, 102018. [Google Scholar]
- Liu, W.; Wang, X.; Liang, S. Trajectory tracking control for wheeled mobile robots based on a cascaded system control method. In Proceedings of the IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society, Singapore, 18–21 October 2020. [Google Scholar]
- Pliego-Jimenez, J.; Martinez-Clark, R.; Cruz-Hernandndez, C. Trajectory tracking of wheeled mobile robots using only Cartesian position measurements. Automatica 2021, 133, 109756. [Google Scholar] [CrossRef]
- Zhou, Y.; Rios, H.; Mera, M.; Polyakov, A.; Zheng, G. Homogeneity-based control strategy for Trajectory tracking in perturbed unicycle mobile robots. IEEE Trans. Contr. Syst. Technol. 2024, 32, 274–281. [Google Scholar] [CrossRef]
- Khalil, H.K. Nonlinear Systems; Prentice Hall: Upper Saddle River, NJ, USA, 2002. [Google Scholar]
- Petrov, P.; Nashashibi, F. Modeling and nonlinear adaptive control for autonomous vehicle overtaking. IEEE Trans. Intel. Transp. Syst. 2014, 4, 1643–1656. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrov, P.; Kralov, I. Exponential Trajectory Tracking Control of Nonholonomic Wheeled Mobile Robots. Mathematics 2025, 13, 1. https://doi.org/10.3390/math13010001
Petrov P, Kralov I. Exponential Trajectory Tracking Control of Nonholonomic Wheeled Mobile Robots. Mathematics. 2025; 13(1):1. https://doi.org/10.3390/math13010001
Chicago/Turabian StylePetrov, Plamen, and Ivan Kralov. 2025. "Exponential Trajectory Tracking Control of Nonholonomic Wheeled Mobile Robots" Mathematics 13, no. 1: 1. https://doi.org/10.3390/math13010001
APA StylePetrov, P., & Kralov, I. (2025). Exponential Trajectory Tracking Control of Nonholonomic Wheeled Mobile Robots. Mathematics, 13(1), 1. https://doi.org/10.3390/math13010001