Exact Finite-Difference Calculus: Beyond Set of Entire Functions
Abstract
:1. Introduction
2. Standard and Non-Standard Finite-Differences
2.1. Standard Finite-Differences
- (1)
- The forward difference
- (2)
- The backward difference
- (3)
- The central differenceHere , , , .
- (1)
- The standard Leibniz rule is violated as follows:
- (2)
- An action of the S-FD on a function , , cannot give the same result as an action of the derivative on , :
- (a)
- The power-law function
- (b)
- The sine and cosine function
- (c)
- The exponential functionHere, , .
- (3)
- The solutions of equations with S-FDs do not coincide with the solutions of the corresponding differential equation with integer-order derivatives. For example, one can compare the first-order differential equation with its solution as follows:
2.2. Non-Standard Finite-Differences
- Using Equations (21) and (25), one see that the NS-FDs of the same order are not identical, i.e.,
- The integer-order NS-FDs strongly depends on the form of the differential equation and the parameters in it. Therefore, the set of the NS-FDs cannot form a calculus of NS-FDs since the set of integer-order NS-FDs cannot be known completely;
- If the solution of differential equation is known, then the NS-FDs can be constructed. For a general differential equation, for which the solution is not known, NS-FDs cannot be proposed in a general form. If we do not know in advance a solution for the differential equation, then the corresponding NS-FDs cannot be constructed;
- The standard Leibniz rule is violated;
3. Exact Finite-Differences for Entire Functions
3.1. Set of Entire Functions
- Every real-valued entire function with , can be represented as a power series
- Any series
- Let us give examples of the following entire functions:
- (A)
- The polynomials ; exponential function:; sine and cosine functions , ; hyperbolic sine and cosine functions , ;
- (B)
- The Mittag–Leffler function ; Gamma function reciprocal ; Wright function ; generalized hypergeometric function ;
- (C)
- Bessel function of the first and second kinds , ; sine integral ; error function ; Airy functions , ; Jacobi theta functions ;
3.2. Generalized (Cesaro and Poisson–Abel) Summation
3.3. Definition and Examples of Exact Finite-Differences of Integer Orders
3.4. Exact Finite-Difference and Derivative of Integer Orders
3.5. Properties of Exact Finite-Differences of Integer Orders
- (1)
- The Leibniz rule
- (2)
- The chain rule
- (3)
- The semi-group property
- (4)
- The equations for power-law entire functions
- (5)
- Let and be entire functions (). If these functions satisfy the following equation:
- (6)
- The Fourier series transform of the exact finite-difference of order is
- (7)
- If , then we can define a norm on the -space by the following equation:
3.6. Exact Finite-Differences of Arbitrary Integer Orders
3.7. Exact Finite-Difference of Arbitrary Positive Order
3.8. Exact Finite-Difference of Negative Order
3.9. Exact Finite-Difference Laplacian of Arbitrary Positive Order
4. Exact Finite-Differences for Non-Entire Functions
- (1)
- The Leibniz rule
- (2)
- The chain rule
- (3)
- The semi-group property
- (4)
- The equations for power-law functions
- (5)
- If functions and satisfy the equation
- (a)
- First example of the action of the GE-FD
- (b)
- Second example of the action of the GE-FD
- (c)
- (d)
- (e)
5. Examples of Difference and Differential Equations with Its Solutions
6. Conclusions
Funding
Conflicts of Interest
References
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach: New York, NY, USA, 1993. [Google Scholar]
- Kiryakova, V. Generalized Fractional Calculus and Applications; Longman and J. Wiley: New York, NY, USA, 1994; 360p, ISBN 9780582219779. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1998; ISBN 978-0-12-558840-9. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006; ISBN 9780444518323. [Google Scholar]
- Diethelm, K. The Analysis of Fractional Differential Equations. An Application-Oriented Exposition Using Differential Operators of Caputo Type; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar] [CrossRef]
- Kochubei, A.; Luchko, Y. (Eds.) Handbook of Fractional Calculus with Applications. Volume 1. Basic Theory; Walter de Gruyter GmbH: Berlin, Germany; Boston, MA, USA, 2019; 481p. [Google Scholar] [CrossRef]
- Kochubei, A.; Luchko, Y. (Eds.) Handbook of Fractional Calculus with Applications. Volume 2. Fractional Differential Equations; Walter de Gruyter GmbH: Berlin, Germany; Boston, MA, USA, 2019; 519p. [Google Scholar] [CrossRef]
- Boole, G. A Treatise on the Calculus of Finite-Differences; Cambridge University Press: Cambridge UK, 2009. [Google Scholar] [CrossRef]
- Agarwal, R.P. Difference Equations and Inequalities: Theory, Methods, and Applications; CRC Press: Boca Raton, FL, USA, 2019; 1000p, ISBN 9780367398941. [Google Scholar]
- Mickens, R.E. Difference Equations: Theory, Applications and Advanced Topics, 3rd ed.; CRC Press: New York, NY, USA, 2015; 555p, ISBN 9781138894235. [Google Scholar]
- Potts, R.B. Differential and difference equations. Am. Math. Mon. 1982, 89, 402–407. [Google Scholar] [CrossRef]
- Potts, R.B. Ordinary and partial difference equations. ANZIAM J. 1986, 27, 488–501. [Google Scholar] [CrossRef]
- Mickens, R.E. Difference equation models of differential equations. Math. Comput. Model. 1988, 11, 528–530. [Google Scholar] [CrossRef]
- Mickens, R.E. Discretizations of nonlinear differential equations using explicit nonstandard methods. J. Comput. Appl. Math. 1999, 110, 181–185. [Google Scholar] [CrossRef]
- Mickens, R.E. Nonstandard finite-difference schemes for differential equations. J. Differ. Equ. Appl. 2010, 8, 823–847. [Google Scholar] [CrossRef]
- Mickens, R.E. Nonstandard Finite-Difference Models of Differential Equations; World Scientific: Singapore, 1993. [Google Scholar] [CrossRef]
- Mickens, R.E. (Ed.) Applications of Nonstandard Finite-Difference Schemes; World Scientific: Singapore, 2000. [Google Scholar] [CrossRef]
- Mickens, R.E. (Ed.) Advances in the Applications of Nonstandard Finite-Difference Schemes; World Scientific: Singapore, 2005. [Google Scholar] [CrossRef]
- Mickens, R.E. Nonstandard Finite-Difference Schemes: Methodology and Applications; World Scientific: Singapore, 2020; 332p, ISBN 978-981122254-2. [Google Scholar] [CrossRef]
- Mickens, R.E. Exact solutions to a finite difference model of a nonlinear reaction-advection equation: Implications for numerical analysis. Numer. Methods Partial Differ. Equ. 1989, 5, 313–325. [Google Scholar] [CrossRef]
- Mickens, R.E.; Smith, A. Finite difference models of ordinary differential equations: In uence of denominator models. J. Frankl. Inst. 1990, 327, 143–145. [Google Scholar] [CrossRef]
- Mickens, R.E. Nonstandard finite difference schemes for reaction-diffusion equations. Numer. Methods Partial Differ. Equ. 1999, 15, 201–214. [Google Scholar] [CrossRef]
- Mickens, R.E. Nonstandard finite difference schemes for reaction–diffusion equations having linear advection. Numer. Methods Partial Differ. Equ. 2000, 16, 361–364. [Google Scholar] [CrossRef]
- Mickens, R.E. A nonstandard finite-difference scheme for the Lotka-Volterra system. Appl. Numer. Math. 2003, 45, 309–314. [Google Scholar] [CrossRef]
- Mickens, R.E. Calculation of denominator functions for nonstandard finite-difference schemes for differential equations satisfying a positivity condition. Numer. Methods Partial Differ. Equ. 2007, 23, 672–691. [Google Scholar] [CrossRef]
- Mickens, R.E. Numerical integration of population models satisfying conservation laws: NSFD methods. J. Biol. Dyn. 2007, 1, 427–436. [Google Scholar] [CrossRef]
- Mickens, R.E. A SIR-model with square-root dynamics: An NSFD scheme. J. Differ. Equ. Appl. 2010, 16, 209–216. [Google Scholar] [CrossRef]
- Mickens, R.E.; Munyakazi, J.; Washington, T.M. A note on the exact discretization for a Cauchy–Euler equation: Application to the Black-Scholes equation. Nat. Differ. Equ. Appl. 2015, 21, 547–552. [Google Scholar] [CrossRef]
- Anguelov, R.; Lubuma, J.M.-S. Contributions to the mathematics of the nonstandard finite difference method and applications. Numer. Methods Partial Differ. Equ. 2001, 17, 518–543. [Google Scholar] [CrossRef]
- Anguelov, R.; Lubuma, J.M.-S. Nonstandard finite difference method by nonlocal approximation. Math. Comput. Simul. 2003, 61, 465–475. [Google Scholar] [CrossRef]
- Patidar, K.C. On the use of non-standard finite difference methods. J. Differ. Equ. Appl. 2005, 11, 735–758. [Google Scholar] [CrossRef]
- Anguelov, R.; Kama, P.; Lubuma, J.M.-S. On non-standard finite-difference models of reaction-diffusion equations. J. Comput. Appl. Math. 2005, 175, 11–29. [Google Scholar] [CrossRef]
- Dimitrov, D.T.; Kojouharov, H.V. Positive and elementary stable nonstandard numerical methods with applications to predator-prey models. J. Comput. Appl. Math. 2006, 189, 98–108. [Google Scholar] [CrossRef]
- Chen-Charpentier, B.M.; Dimitrov, D.T.; Kojouharov, H.V. Combined nonstandard numerical methods for ODEs with polynomial right-hand sides. Math. Comput. Simul. 2006, 73, 105–113. [Google Scholar] [CrossRef]
- Roeger, L.I.W. Nonstandard finite-difference schemes for the Lotka-Volterra systems: Generalization of Mickens’s method. J. Differ. Equ. Appl. 2006, 12, 937–948. [Google Scholar] [CrossRef]
- Roeger, L.I.W. Dynamically consistent discrete Lotka-Volterra competition models derived from nonstandard finite-difference schemes. Discret. Contin. Dyn. Syst. Ser. B 2008, 9, 415–429. [Google Scholar] [CrossRef]
- Dimitrov, D.T.; Kojouharov, H.V. Nonstandard finite-difference methods for predator-prey models with general functional response. Math. Comput. Simul. 2008, 78, 1–11. [Google Scholar] [CrossRef]
- Alvarez-Ramirez, J.; Valdes-Parada, F.J. Non-standard finite-differences schemes for generalized reaction-diffusion equations. J. Comput. Appl. Math. 2009, 228, 334–343. [Google Scholar] [CrossRef]
- Radwan, A.G.; Moaddy, K.; Momani, S. Stability and non-standard finite-difference method of the generalized Chuas circuit. Comput. Math. Appl. 2011, 62, 961–970. [Google Scholar] [CrossRef]
- Anguelov, R.; Lubuma, J.M.-S.; Shillor, M. Topological dynamic consistency of non-standard finite difference schemes for dynamical systems. J. Differ. Equ. Appl. 2011, 17, 1769–1791. [Google Scholar] [CrossRef]
- Anguelov, R.; Dumont, Y.; Lubuma, J.M.-S.; Shillor, M. Dynamically consistent nonstandard finite difference schemes for epidemiological models. J. Comput. Appl. Math. 2014, 255, 161–182. [Google Scholar] [CrossRef]
- Garba, S.M.; Gumel, A.B.; Hassan, A.S.; Lubuma, J.M.-S. Switching from exact scheme to nonstandard finite difference scheme for linear delay differential equation. Appl. Math. Comput. 2015, 258, 388–403. [Google Scholar] [CrossRef]
- Lemeshevsky, S.; Matus, P.; Poliakov, D. (Eds.) Exact Finite-Difference Schemes; De Gruyter: Berlin, Germany, 2016; 233p. [Google Scholar] [CrossRef]
- Cresson, J.; Pierret, F. Non standard finite difference scheme preserving dynamical properties. J. Comput. Appl. Math. 2016, 303, 15–30. [Google Scholar] [CrossRef]
- Patidar, K.C. Nonstandard finite-difference methods: Recent trends and further developments. J. Differ. Equ. Appl. 2016, 22, 817–849. [Google Scholar] [CrossRef]
- Wood, D.T.; Kojouharov, H.V.; Dimitrov, D.T. Universal approaches to approximate biological systems with nonstandard finite difference methods. Math. Comput. Simul. 2016, 133, 337–350. [Google Scholar] [CrossRef]
- Korpusik, A. A nonstandard finite difference scheme for a basic model of cellular immune response to viral infection. Commun. Nonlinear Sci. Numer. Simul. 2017, 43, 369–384. [Google Scholar] [CrossRef]
- Martin-Vaquero, J.; del Rey, A.M.; Encinas, A.H.; Guillen, J.D.H.; Queiruga-Dios, A.; Sanchez, G.R. Higher-order nonstandard finite difference schemes for a MSEIR model for a malware propagation. J. Comput. Appl. Math. 2017, 317, 146–156. [Google Scholar] [CrossRef]
- Martin-Vaquero, J.; del Rey, A.M.; Encinas, A.H.; Guillen, J.D.H.; Queiruga-Dios, A.; Sanchez, G.R. Variable step length algorithms with high-order extrapolated non-standard finite difference schemes for a SEIR model. J. Comput. Appl. Math. 2018, 330, 848–854. [Google Scholar] [CrossRef]
- Zhuang, X.; Wang, Q.; Wen, J. Numerical dynamics of nonstandard finite-difference method for nonlinear delay differential equation. Int. J. Bifurc. Chaos 2018, 28, 1850133. [Google Scholar] [CrossRef]
- Castro, M.A.; Garcia, M.A.; Martin, J.A.; Rodriguez, F. Exact and nonstandard finite difference schemes for coupled linear delay differential systems. Mathematics 2019, 7, 1038. [Google Scholar] [CrossRef]
- Kojouharov, H.V.; Roy, S.; Gupta, M.; Alalhareth, F.; Slezak, J.M. A second-order modified nonstandard theta method for one-dimensional autonomous differential equations. Appl. Math. Lett. 2020, 112, 106775. [Google Scholar] [CrossRef]
- Castro, M.A.; Sirvent, A.; Rodriguez, F. Nonstandard finite difference schemes for general linear delay differential systems. Math. Methods Appl. Sci. 2021, 44, 3985–3999. [Google Scholar] [CrossRef]
- Zeb, A.; Alzahrani, A. Non-standard finite-difference scheme and analysis of smoking model with reversion class. Results Phys. 2021, 21, 103785. [Google Scholar] [CrossRef] [PubMed]
- Vaz, S.; Torres, D.F.M. A dynamically-consistent nonstandard finite difference scheme for the SICA model. Math. Biosci. Eng. 2021, 18, 552–4571. [Google Scholar] [CrossRef] [PubMed]
- Khalsaraei, M.M.; Shokri, A.; Noeiaghdam, S.; Molayi, M. Nonstandard finite difference schemes for an SIR epidemic model. Mathematics 2021, 9, 3082. [Google Scholar] [CrossRef]
- Treibert, S.; Brunner, H.; Ehrhardt, M. A nonstandard finite difference scheme for the SVICDR model to predict COVID-19 dynamics. Math. Biosci. Eng. 2022, 19, 1213–1238. [Google Scholar] [CrossRef] [PubMed]
- Conte, D.; Pagano, G.; Paternoster, B. Nonstandard finite differences numerical methods for a vegetation reaction-diffusion model. J. Comput. Appl. Math. 2022, 419, 114790. [Google Scholar] [CrossRef]
- Conte, D.; Guarino, N.; Pagano, G.; Paternoster, B. On the advantages of nonstandard finite difference discretizations for differential problems. Numer. Anal. Appl. 2022, 15, 219–235. [Google Scholar] [CrossRef]
- Pasha, S.A.; Nawaz, Y.; Arif, M.S. On the nonstandard finite difference method for reaction-diffusion models. Chaos Solitons Fractals 2023, 166, 112929. [Google Scholar] [CrossRef]
- Cieslinski, J.L.; Ratkiewicz, B. On simulations of the classical harmonic oscillator equation by difference equations. Adv. Differ. Equ. 2006, 2006, 40171. [Google Scholar] [CrossRef]
- Cieslinski, J.L. An orbit-preserving discretization of the classical Kepler problem. Phys. Lett. A 2007, 370, 8–12. [Google Scholar] [CrossRef]
- Cieslinski, J.L. On the exact discretization of the classical harmonic oscillator equation. J. Differ. Equ. Appl. 2011, 17, 1673–1694. [Google Scholar] [CrossRef]
- Tarasov, V.E. No violation of the Leibniz rule. No fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 2945–2948. [Google Scholar] [CrossRef]
- Tarasov, V.E. Leibniz rule and fractional derivatives of power functions. J. Comput. Nonlinear Dyn. 2016, 11, 031014. [Google Scholar] [CrossRef]
- Cresson, J.; Szafranska, A. Comments on various extensions of the Riemann–Liouville fractional derivatives: About the Leibniz and chain rule properties. Commun. Nonlinear Sci. Numer. Simul. 2020, 82, 104903. [Google Scholar] [CrossRef]
- Grünwald, A.K. About “limited” derivations their application. (“Uber” begrenzte “Derivationen und deren Anwendung”). Z. Angew. Math. Phys. (J. Appl. Math. Phys.) 1867, 12, 441–480. (In Germany) [Google Scholar]
- Letnikov, A.V. Theory of differentiation with arbitrary pointer. Mat. Sb. 1868, 3, 1–68. (In Russian) [Google Scholar]
- Tarasov, V.E. Exact discretization by Fourier transforms. Commun. Nonlinear Sci. Numer. Simul. 2016, 37, 31–61. [Google Scholar] [CrossRef]
- Moaddy, K.; Momani, S.; Hashim, I. The non-standard finite-difference scheme for linear fractional PDEs in fluid mechanics. Comput. Math. Appl. 2011, 61, 1209–1216. [Google Scholar] [CrossRef]
- Moaddy, K.; Hashim, I.; Momani, S. Non-standard finite-difference schemes for solving fractional-order Rossler chaotic and hyperchaotic systems. Comput. Math. Appl. 2011, 62, 1068–1074. [Google Scholar] [CrossRef]
- Momani, S.; Rqayiq, A.A.; Baleanu, D. A nonstandard finite-difference scheme for two-sided space-fractional partial differential equations. Int. J. Bifurc. Chaos 2012, 22, 1250079. [Google Scholar] [CrossRef]
- Ongun, M.Y.; Arslan, D.; Garrappa, R. Nonstandard finite-difference schemes for a fractional-order Brusselator system. Adv. Differ. Equ. 2013, 2013, 102. [Google Scholar] [CrossRef]
- Zibaei, S.; Namjoo, M. A nonstandard finite difference scheme for solving three-species food chain with fractional-order Lotka-Volterra model. Iran. J. Numer. Anal. Optim. 2016, 6, 53–79. [Google Scholar] [CrossRef]
- Sayevand, K.; Machado, J.T.; Moradi, V. A new non-standard finite-difference method for analyzing the fractional Navier–Stokes equations. Comput. Math. Appl. 2019, 78, 1681–1694. [Google Scholar] [CrossRef]
- Shabbir, M.S.; Din, Q.; Safeer, M.; Khan, M.A.; Ahmad, K. A dynamically consistent nonstandard finite difference scheme for a predator-prey model. Adv. Differ. Equ. 2019, 2019, 381. [Google Scholar] [CrossRef]
- Cai, L.; Guo, M.F.; Li, Y.Q.; Ying, W.J.; Gao, H.; Luo, X.Y. Nonstandard finite-difference method for nonlinear Riesz space fractional reaction-diffusion equation. Int. J. Numer. Anal. Model. 2019, 16, 925–938. Available online: http://global-sci.org/intro/article_detail/ijnam/13260.html (accessed on 22 February 2024).
- Shahmorad, S.; Kalantari, R.; Assadzadeh, A. Numerical solution of fractional Black-Scholes model of American put option pricing via a nonstandard finite difference method: Stability and convergent analysis. Math. Methods Appl. Sci. 2021, 44, 2790–2805. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Q. A non-standard finite-difference method for space fractional advection-diffusion equation. Numer. Methods Partial Differ. Equ. 2021, 37, 2527–2539. [Google Scholar] [CrossRef]
- Baleanu, D.; Zibaei, S.; Namjoo, M.; Jajarmi, A. A nonstandard finite difference scheme for the modeling and nonidentical synchronization of a novel fractional chaotic system. Adv. Contin. Discret. Model. 2021, 308, 308. [Google Scholar] [CrossRef]
- Taghipour, M.; Aminikhah, H. An efficient non-standard finite-difference scheme for solving distributed order time fractional reaction-diffusion equation. Int. J. Appl. Comput. Math. 2022, 8, 56. [Google Scholar] [CrossRef]
- Raza, N.; Bakar, A.; Khan, A.; Tunc, C. Numerical simulations of the fractional-order SIQ mathematical model of corona virus disease using the nonstandard finite difference scheme. Malays. J. Math. Sci. 2022, 16, 391–411. Available online: https://mjms.upm.edu.my/lihatmakalah.php?kod=2022/September/16/3/391-411 (accessed on 22 February 2024). [CrossRef]
- Butt, A.R.; Saqib, A.A.; Alshomrani, A.S.; Bakar, A.; Inc, M. Dynamical analysis of a nonlinear fractional cervical cancer epidemic model with the nonstandard finite difference method. Ain Shams Eng. J. 2023, 15, 102479. [Google Scholar] [CrossRef]
- Maamar, M.H.; Ehrhardt, M.; Tabharit, L. A nonstandard finite difference scheme for a time-fractional model of Zika virus transmission. Math. Biosci. Eng. 2024, 21, 924–962. [Google Scholar] [CrossRef]
- Tarasov, V.E.; Zaslavsky, G.M. Fractional dynamics of coupled oscillators with long-range interaction. Chaos 2006, 16, 023110. [Google Scholar] [CrossRef]
- Tarasov, V.E.; Zaslavsky, G.M. Fractional dynamics of systems with long-range interaction. Commun. Nonlinear Sci. Numer. Simul. 2006, 11, 885–898. [Google Scholar] [CrossRef]
- Laskin, N.; Zaslavsky, G.M. Nonlinear fractional dynamics on a lattice with long range interactions. Phys. A 2006, 368, 38–54. [Google Scholar] [CrossRef]
- Tarasov, V.E. Continuous limit of discrete systems with long-range interaction. J. Phys. A Math. Gen. 2006, 39, 14895. [Google Scholar] [CrossRef]
- Tarasov, V.E. Map of discrete system into continuous. J. Math. Phys. 2006, 47, 092901. [Google Scholar] [CrossRef]
- Tarasov, V.E. Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media; Springer: New York, NY, USA, 2010. [Google Scholar] [CrossRef]
- Korabel, N.; Zaslavsky, G.M.; Tarasov, V.E. Coupled oscillators with power-law interaction and their fractional dynamics analogues. Commun. Nonlinear Sci. Numer. Simul. 2007, 12, 1405–1417. [Google Scholar] [CrossRef]
- Van Den Berg, T.L.; Fanelli, D.; Leoncini, X. Stationary states and fractional dynamics in systems with long-range interactions. Europhys. Lett. 2010, 89, 50010. [Google Scholar] [CrossRef]
- Ishiwata, R.; Sugiyama, Y. Relationships between power-law long-range interactions and fractional mechanics. Phys. A 2012, 391, 5827–5838. [Google Scholar] [CrossRef]
- Tarasov, V.E. Lattice model with power-law spatial dispersion for fractional elasticity. Cent. Eur. J. Phys. 2013, 11, 1580–1588. [Google Scholar] [CrossRef]
- Tarasov, V.E. Fractional gradient elasticity from spatial dispersion law. ISRN Condens. Matter Phys. 2014, 2014, 794097. [Google Scholar] [CrossRef]
- Michelitsch, T.M.; Collet, B.A.; Riascos, A.P.; Nowakowski, A.F.; Nicolleau, F.C.G.A. A fractional generalization of the classical lattice dynamics approach. Chaos Solitons Fractals 2016, 92, 43–50. [Google Scholar] [CrossRef]
- Tarasov, V.E. Lattice with long-range interaction of power-law type for fractional non-local elasticity. Int. J. Solids Struct. 2014, 51, 2900–2907. [Google Scholar] [CrossRef]
- Erdelyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Table of Integral Transforms: Volume I; McGraw-Hill: New York, NY, USA; Toronto, ON, Canada; London, UK, 1954; Available online: https://authors.library.caltech.edu/records/mhd23-e0z22 (accessed on 22 February 2024).
- Erdelyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Table of Integral Transforms. Volume II; McGraw-Hill: New York, NY, USA; Toronto, ON, Canada; London, UK, 1954; Available online: https://authors.library.caltech.edu/records/mhd23-e0z22 (accessed on 22 February 2024).
- Prudnikov, A.P.; Brychkov, Y.A.; Marichev, O.I. Integrals and Series. Volume 3. Special Functions. Additional Chapters, 2nd ed.; FIZMATLIT: Moscow, Russia, 2003; 688p, ISBN 5-9221-0325-3. [Google Scholar]
- Tarasov, V.E. Toward lattice fractional vector calculus. J. Phys. A 2014, 47, 355204. [Google Scholar] [CrossRef]
- Tarasov, V.E. Lattice fractional calculus. Appl. Math. Comput. 2015, 257, 12–33. [Google Scholar] [CrossRef]
- Tarasov, V.E. United lattice fractional integro-differentiation. Fract. Calc. Appl. Anal. 2016, 19, 625–664. [Google Scholar] [CrossRef]
- Tarasov, V.E. Discretely and continuously distributed dynamical systems with fractional nonlocality. In Fractional Dynamics; Cattani, C., Srivastava, H.M., Yang, X.-J., Eds.; De Gruyter Open: Warsaw, Poland; Berlin, Germany, 2015; Chapter 3; pp. 31–49. [Google Scholar] [CrossRef]
- Tarasov, V.E. Three-dimensional lattice approach to fractional generalization of continuum gradient elasticity. Prog. Fract. Differ. Appl. 2015, 1, 243–258. [Google Scholar] [CrossRef]
- Tarasov, V.E. Fractional Liouville equation on lattice phase-space. Phys. A Stat. Mech. Its Appl. 2015, 421, 330–342. [Google Scholar] [CrossRef]
- Tarasov, V.E. Large lattice fractional Fokker–Planck equation. J. Stat. Mech. Theory Exp. 2014, 2014, P09036. [Google Scholar] [CrossRef]
- Tarasov, V.E. Fractional quantum field theory: From lattice to continuum. Adv. High Energy Phys. 2014, 2014, 957863. [Google Scholar] [CrossRef]
- Tarasov, V.E. Exact discrete analogs of derivatives of integer orders: Differences as infinite series. J. Math. 2015, 2015, 134842. [Google Scholar] [CrossRef]
- Tarasov, V.E. Exact Discretization of fractional Laplacian. Comput. Math. Appl. 2017, 73, 855–863. [Google Scholar] [CrossRef]
- Tarasov, V.E. Exact finite differences: A brief overview. Alm. Mod. Sci. Educ. 2016, 7, 105–108. Available online: https://www.gramota.net/eng/materials/1/2016/7/27.html (accessed on 22 February 2024).
- Tarasov, V.E. On chain rule for fractional derivatives. Commun. Nonlinear Sci. Numer. Simul. 2016, 30, 1–4. [Google Scholar] [CrossRef]
- Osler, T.J. Leibniz role for fractional derivatives, generalized and an application to infinite series. SIAM J. Math. Anal. (SIMA) 1970, 18, 658–674. [Google Scholar] [CrossRef]
- Osler, T.J. The fractional derivative of a composite function. SIAM J. Math. Anal. (SIMA) 1970, 1, 288–293. [Google Scholar] [CrossRef]
- Osler, T.J. A further extension of the Leibniz role to fractional derivatives and its relation to Parseval’s fonnula. SIAM J. Math. Anal. (SIMA) 1972, 3, 1–16. [Google Scholar] [CrossRef]
- Osler, T.J. The integral analog of the Leibniz rule. Math. Comput. 1972, 26, 903–915. [Google Scholar] [CrossRef]
- Tarasov, V.E. What discrete model corresponds exactly to gradient elasticity equation? J. Mech. Mater. Struct. 2016, 11, 329–343. [Google Scholar] [CrossRef]
- Tarasova, V.V.; Tarasov, V.E. Exact discretization of economic accelerator and multiplier with memory. Fractal Fract. 2017, 1, 6. [Google Scholar] [CrossRef]
- Tarasova, V.V.; Tarasov, V.E. Accelerators in macroeconomics: Comparison of discrete and continuous approaches. Am. J. Econ. Bus. Adm. 2017, 9, 47–55. [Google Scholar] [CrossRef]
- Tarasov, V.E.; Tarasova, V.V. Economic Dynamics with Memory: Fractional Calculus Approach; De Gruyter: Berlin, Germany; Boston, MA, USA, 2021; 602p. [Google Scholar] [CrossRef]
- Tarasov, V.E. Exact discrete analogs of canonical commutation and uncertainty relations. Mathematics 2016, 4, 44. [Google Scholar] [CrossRef]
- Tarasov, V.E. Exact discretization of Schrodinger equation. Phys. Lett. A 2016, 380, 68–75. [Google Scholar] [CrossRef]
- Tarasov, V.E. Exact solution of T-difference radial Schrodinger equation. Int. J. Appl. Comput. Math. 2017, 3, 2779–2784. [Google Scholar] [CrossRef]
- Tarasov, V.E. Lattice fractional quantum field theory: Exact differences approach. Mod. Phys. Lett. A 2021, 36, 2140001. [Google Scholar] [CrossRef]
- Tarasov, V.E. Exact discretization of non-commutative space-time. Mod. Phys. Lett. A 2020, 35, 2050135. [Google Scholar] [CrossRef]
- Chou, C.-L. On the exact discretization of Schrodinger equation. Phys. Lett. A 2021, 386, 126986. [Google Scholar] [CrossRef]
- Martinez-Perez, A.; Torres-Vega, G. Discrete self-adjointness and quantum dynamics. Travel time. J. Math. Phys. 2021, 62, 012103. [Google Scholar] [CrossRef]
- Sonnenschein, J.; Tsulaia, M. A note on shape invariant potentials for discretized Hamiltonians. Mod. Phys. Lett. A 2022, 37, 2250153. [Google Scholar] [CrossRef]
- Gogte, S.R.; Kashid, R.V.; Kale, B.B.; Hawaldar, R. A quantum simulation of exact discrete Schrodinger equation with different qubit-state encodings. Soc. Sci. Res. Netw. (SSRN) 2023, 4462567. [Google Scholar] [CrossRef]
- Fichtenholz, G.M. Differential and Integral Calculus, 2, 7th ed.; Nauka: Moscow, Russia, 1969; 800p, Chapters 11 and 12. (In Russian) [Google Scholar]
- Fichtenholz, G.M. Infinite Series: Ramifications. In Pocket Mathematical Library; Routledge: Milton Park, UK; Philadelphia, PA, USA; Melbourne, Australia; New Delhi, India; Singapore; Beijing, China, 1970; Available online: https://mirtitles.org/2022/02/13/infinite-series-ramifications-pocket-mathematical-library-course-4-fichtenholz/ (accessed on 22 February 2024).
- Fichtenholz, G.M. Functional Series. Pocket Mathematical Library; Gordon and Breach Science: Milton Park, UK; Philadelphia, PA, USA; Melbourne, Australia; New Delhi, India; Singapore; Beijing, China, 1970. [Google Scholar]
- Hardy, G.H. Divergent Series, 2nd ed.; American Mathematical Society: New York, NY, USA, 2000. [Google Scholar]
- Young, W.H. On classes of summable functions and their Fourier series. Proc. R. Soc. A 1912, 87, 225–229. [Google Scholar] [CrossRef]
- Young, W.H. On the multiplication of successions of Fourier constants. Proc. R. Soc. A 1912, 87, 331–339. [Google Scholar] [CrossRef]
- Hardy, G.H.; Littlewood, J.E.; Polya, D.G. Inequalities, 2nd ed.; Cambridge University Press: Cambridge, UK, 1952. [Google Scholar]
- Letnikov, A.V. On the historical development of the theory of differentiation with arbitrary index. Sb. Math. (Mat. Sb.) 1868, 3, 85–112. Available online: http://mi.mathnet.ru/eng/msb8048 (accessed on 22 February 2024).
- Ross, B. A brief history and exposition of the fundamental theory of fractional calculus. In Fractional Calculus and Its Applications; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 1975; Volume 457, pp. 1–36. [Google Scholar] [CrossRef]
- Tenreiro Machado, J.A.; Kiryakova, V.; Mainardi, F. Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 1140–1153. [Google Scholar] [CrossRef]
- Tenreiro Machado, J.A.; Galhano, A.M.; Trujillo, J.J. Science metrics on fractional calculus development since 1966. Fract. Calc. Appl. Anal. 2013, 16, 479–500. [Google Scholar] [CrossRef]
- Tenreiro Machado, J.A.; Galhano, A.M.; Trujillo, J.J. On development of fractional calculus during the last fifty years. Scientometrics 2014, 98, 577–582. [Google Scholar] [CrossRef]
- Rogosin, S.; Dubatovskaya, M. Fractional calculus in Russia at the end of XIX century. Mathematics 2021, 9, 1736. [Google Scholar] [CrossRef]
- Prudnikov, A.P.; Brychkov, Y.A.; Marichev, O.I. Integrals and Series, Volume 1: Elementary Functions; Gordon and Breach: New York, NY, USA, 1986. [Google Scholar]
- Korn, G.A.; Korn, T.M. Mathematical Handbook for Scientists and Engineers; McGraw-Hill: Mineola, NY, USA, 1968. [Google Scholar]
- Morse, P.M.; Feshbach, H. Methods of Theoretical Physics; Part I; McGraw-Hill: New York, NY, USA, 1953. [Google Scholar]
- Gorenflo, R.; Kilbas, A.A.; Mainardi, F.; Rogosin, S.V. Mittag–Leffler Functions, Related Topics and Applications, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2020; 443p. [Google Scholar] [CrossRef]
- Gorenflo, R.; Kilbas, A.A.; Mainardi, F.; Rogosin, S.V. Mittag–Leffler Functions, Related Topics and Applications; Springer: Berlin/Heidelberg, Germany, 2014; 443p. [Google Scholar] [CrossRef]
- Erdelyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Higher Transcendental Functions. Volume 1; McGraw-Hill: New York, NY, USA, 1953; Available online: https://authors.library.caltech.edu/records/cnd32-h9x80 (accessed on 22 February 2024).
- Erdelyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Higher Transcendental Functions. Volume 2; McGraw-Hill: New York, NY, USA, 1953. [Google Scholar]
- Klafter, J.; Lim, S.C.; Metzler, R. (Eds.) Fractional Dynamics. Recent Advances; World Scientific: Singapore, 2011. [Google Scholar] [CrossRef]
- Luo, A.C.J.; Afraimovich, V.S. (Eds.) Long-Range Interaction, Stochasticity and Fractional Dynamics; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar] [CrossRef]
- Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models; World Scientific: Singapore, 2010. [Google Scholar] [CrossRef]
- Uchaikin, V.V. Fractional Derivatives for Physicists and Engineers. Vol. 1 Background and Theory. Volume 2. Application; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar] [CrossRef]
- Uchaikin, V.; Sibatov, R. Fractional Kinetics in Solids: Anomalous Probability Transport in Semiconductors, Dielectrics and Nanosystems; World Scientific: Singapore, 2013. [Google Scholar] [CrossRef]
- Uchaikin, V.; Sibatov, R. Fractional Kinetics in Space. Anomalous Transport Models; Worls Scientific: Singapore, 2018; 300p. [Google Scholar] [CrossRef]
- Atanackovic, T.; Pilipovic, S.; Stankovic, B.; Zorica, D. Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes; Wiley-ISTE: London, UK; Hoboken, NJ, USA, 2014; 336p. [Google Scholar]
- Atanackovic, T.; Pilipovic, S.; Stankovic, B.; Zorica, D. Fractional Calculus with Applications in Mechanics: Wave Propagation, Impact and Variational Principles; Wiley-ISTE: London, UK; Hoboken, NJ, USA, 2014. [Google Scholar]
- Povstenko, Y. Fractional Thermoelasticity; Springer: Cham, Switzerland; Berlin/Heidelberg, Germany; New York, NY, USA; Dordrecht, The Netherlands; London, UK, 2015. [Google Scholar] [CrossRef]
- Tarasov, V.E. (Ed.) Handbook of Fractional Calculus with Applications. Volume 4. Application in Physics. Part A; Walter de Gruyter GmbH: Berlin, Germany; Boston, MA, USA, 2019. [Google Scholar] [CrossRef]
- Tarasov, V.E. (Ed.) Handbook of Fractional Calculus with Applications. Volume 5. Application in Physics. Part B; Walter de Gruyter GmbH: Berlin, Germany; Boston, MA, USA, 2019. [Google Scholar] [CrossRef]
- Yoon, S.; Jeong, D.; Lee, C.; Kim, H.; Kim, S.; Lee, H.G.; Kim, J. Fourier-spectral method for the phase-field equations. Mathematics 2020, 8, 1385. [Google Scholar] [CrossRef]
Operator Type | Equation and Operator | Solution |
---|---|---|
Der | ||
S-FD | ||
NS-FD | ||
E-FD | ||
Operator Type | Equation, Operator, and Solution |
---|---|
Der | |
S-FD | |
NS-FD | |
E-FD | |
Differential Equation and Solution | Equation with E-FD and Solution | |
---|---|---|
1. | ||
2. | ||
3. | ||
4. | ||
5. | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarasov, V.E. Exact Finite-Difference Calculus: Beyond Set of Entire Functions. Mathematics 2024, 12, 972. https://doi.org/10.3390/math12070972
Tarasov VE. Exact Finite-Difference Calculus: Beyond Set of Entire Functions. Mathematics. 2024; 12(7):972. https://doi.org/10.3390/math12070972
Chicago/Turabian StyleTarasov, Vasily E. 2024. "Exact Finite-Difference Calculus: Beyond Set of Entire Functions" Mathematics 12, no. 7: 972. https://doi.org/10.3390/math12070972