The Role of Data on the Regularity of Solutions to Some Evolution Equations
Abstract
1. Introduction
2. Statement of Results
3. Proofs of the Results
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Nash, J. Continuity of solutions of parabolic and elliptic equations. Am. J. Math. 1958, 80, 931–954. [Google Scholar] [CrossRef]
- Moser, J. A Harnack inequality for parabolic differential equations. Commun. Pure Appl. Math. 1964, 17, 101–134. [Google Scholar] [CrossRef]
- Ladyženskaja, O.; Solonnikov, V.A.; Ural’ceva, N.N. Linear and Quasilinear Equations of Parabolic Type; Translations of the American Mathematical Society; American Mathematical Society: Providence, RI, USA, 1968. [Google Scholar]
- Lions, J.L. Quelques Methodes de Resolution des Problemes Aux Limites Non Lineaires; Dunod et Gauthiers-Villars: Paris, France, 1969. [Google Scholar]
- Aronson, D.G.; Serrin, J. Local behavior of solutions of quasilinear parabolic equations. Arch. Ration. Mech. Anal. 1967, 25, 81–122. [Google Scholar] [CrossRef]
- Bénilan, P.; Crandall, M.G. Regularizing Effects of Homogeneous Evolution Equations; MRC Technical Report N. 2076; MRC: Madison, WI, USA, 1980. [Google Scholar]
- Boccardo, L.; Gallouet, T. Nonlinear elliptic and parabolic equations involving measure data. J. Funct. Anal. 1989, 87, 149–169. [Google Scholar] [CrossRef]
- Boccardo, L.; Dall’Aglio, A.; Gallouet, T.; Orsina, L. Existence and regularity results for nonlinear parabolic equations. Adv. Math. Sci. Appl. 1999, 9, 1017–1031. [Google Scholar]
- Di Benedetto, E.; Herrero, M.A. On the Cauchy problem and initial traces for a degenerate parabolic equation. Trans. AMS 1989, 314, 187–224. [Google Scholar] [CrossRef]
- Herrero, M.A.; Vazquez, J.L. Asymptotic behaviour of the solutions of a strongly nonlinear parabolic problem. Ann. Fac. Sci. Toulose Math. 1981, 3, 113–127. [Google Scholar] [CrossRef]
- Porzio, M.M. Existence of solutions for some “noncoercive” parabolic equations. Discret. Contin. Dyn. Syst. 1999, 5, 553–568. [Google Scholar] [CrossRef]
- Dall’Aglio, A.; Orsina, L. Existence results for some nonlinear parabolic equations with nonregular data. Differ. Integral Equ. 1992, 5, 1335–1354. [Google Scholar] [CrossRef]
- Baras, P.; Pierre, M. Problémes paraboliques semilinéaires avec donnés mesures. Appl. Anal. 1984, 18, 11–149. [Google Scholar] [CrossRef]
- Andreu, F.; Mazon, J.M.; Segura De Leon, S.; Toledo, J. Existence and uniqueness for a degenerate parabolic equation with L1(Ω) data. Trans. Am. Math. Soc. 1999, 351, 285–306. [Google Scholar] [CrossRef]
- Prignet, A. Existence and uniqueness of “entropy” solutions of parabolic problems with L1 data. Nonlinear Anal. TMA 1997, 28, 1943–1954. [Google Scholar] [CrossRef]
- Dall’Aglio, A. Approximated solutions of equations with L1 data. Application to the H-convergence of quasi-linear parabolic equations. Ann. Mat. Pura Appl. 1996, 170, 207–240. [Google Scholar] [CrossRef]
- Porretta, A. Regularity for entropy solutions of a class of parabolic equations with nonregular initial datum. Dyn. Syst. Appl. 1998, 7, 53–71. [Google Scholar]
- Kuusi, T.; Mingione, G. Riesz Potentials and Nonlinear Parabolic Equations. Arch. Ration. Mech. Anal. 2014, 212, 727–780. [Google Scholar] [CrossRef]
- Blanchard, D.; Murat, F.; Redwane, H. Existence and uniqueness of a renormalized solution for a fairly general class of nonlinear parabolic problems. J. Differ. Equ. 2001, 177, 331–374. [Google Scholar] [CrossRef]
- Cipriani, F.; Grillo, G. Uniform bounds for solutions to quasilinear parabolic equations. J. Differ. Equ. 2001, 177, 209–234. [Google Scholar] [CrossRef]
- Di Benedetto, E. Degenerate Parabolic Equations; Springer: New York, NY, USA, 1993. [Google Scholar]
- Vazquez, J.L. Smoothing and Decay Estimates for Nonlinear Diffusion Equations; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Porzio, M.M. On decay estimates. J. Evol. Equ. 2009, 9, 561–591. [Google Scholar] [CrossRef]
- Veron, L. Effects regularisants des semi-groupes non linéaires dans des espaces de Banach. Ann. Fac. Sci. Toulose Math. 1979, 1, 171–200. [Google Scholar] [CrossRef]
- Bonforte, M.; Grillo, G. Super and ultracontractive bounds for doubly nonlinear evolution equations. Rev. Mat. Iberoam. 2006, 22, 11–129. [Google Scholar]
- Kalashnikov, A.S. Cauchy’s problem in classes of increasing functions for certain quasi-linear degenerate parabolic equations of the second order. Differ. Uravn. 1973, 9, 682–691. [Google Scholar]
- Porzio, M.M. Existence, uniqueness and behavior of solutions for a class of nonlinear parabolic problems. Nonlinear Anal. TMA 2011, 74, 5359–5382. [Google Scholar] [CrossRef]
- Porzio, M.M. Asymptotic behavior and regularity properties of strongly nonlinear parabolic equations. Ann. Mat. Pura Appl. 2019, 198, 1803–1833. [Google Scholar] [CrossRef]
- Porzio, M.M. Regularity and time behavior of the solutions of linear and quasilinear parabolic equations. Adv. Differ. Equ. 2018, 23, 329–372. [Google Scholar] [CrossRef]
- Porzio, M.M. Regularity and time behavior of the solutions to weak monotone parabolic equations. J. Evol. Equ. 2021, 21, 3849–3889. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Porzio, M.M. The Role of Data on the Regularity of Solutions to Some Evolution Equations. Mathematics 2024, 12, 761. https://doi.org/10.3390/math12050761
Porzio MM. The Role of Data on the Regularity of Solutions to Some Evolution Equations. Mathematics. 2024; 12(5):761. https://doi.org/10.3390/math12050761
Chicago/Turabian StylePorzio, Maria Michaela. 2024. "The Role of Data on the Regularity of Solutions to Some Evolution Equations" Mathematics 12, no. 5: 761. https://doi.org/10.3390/math12050761
APA StylePorzio, M. M. (2024). The Role of Data on the Regularity of Solutions to Some Evolution Equations. Mathematics, 12(5), 761. https://doi.org/10.3390/math12050761