Unraveling the Complexity of Inverting the Sturm–Liouville Boundary Value Problem to Its Canonical Form
Abstract
:1. Introduction
2. Sturm–Liouville Boundary Value Problem
3. Reciprocal Quadratic Invariant Function
3.1. Vanishing Potential and Constant Density Functions
3.2. Constant Potential and Quadratic Density Functions
- Case A: ;
- Case B: ;
- Case C: .
3.3. Both Nonzero Constant Potential and Density Functions
3.4. Reciprocal Linear Function for
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Proof of Lemma 1
Appendix B. Proof of Lemma 2
Appendix C. Proof of Lemma 3
Appendix D. Proof of Lemma 4
Appendix E. Proof of Theorem 1
Appendix F. Proof of Corollary 1
References
- Zettl, A. Sturm-Liouville Theory; American Mathematical Society: Providence, RI, USA, 2010. [Google Scholar]
- Lützen, J. Sturm and Liouville’s work on ordinary linear differential equations. The emergence of Sturm-Liouville theory. Arch. Hist. Exact Sci. 1984, 29, 309–376. [Google Scholar] [CrossRef]
- Lützen, J. Joseph Liouville 1809–1882: Master of Pure and Applied Mathematics; Springer Science & Business Media: New York, NY, USA, 2012. [Google Scholar]
- Pryce, J.D. Numerical Solution of Sturm-Liouville Problems; Oxford University Press: Oxford, UK, 1993. [Google Scholar]
- Bailey, P.B.; Everitt, W.N.; Zettl, A. The SLEIGN2 Sturm-Liouville code. ACM Trans. Math. Softw. 2001, 27, 143–192. [Google Scholar] [CrossRef]
- Amrein, W.O.; Hinz, A.M.; Pearson, D.B. (Eds.) Sturm-Liouville Theory: Past and Present; Birkhäuser Verlag: Basel, Switzerland, 2005. [Google Scholar]
- Al-Gwaiz, M.A. Sturm-Liouville Theory and Its Applications; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Agarwal, R.P.; O’Regan, D. Ordinary and Partial Differential Equations: With Special Functions, Fourier Series, and Boundary Value Problems; Springer Science & Business Media: New York, NY, USA, 2009. [Google Scholar]
- Teschl, G. Ordinary Differential Equations and Dynamical Systems; American Mathematical Society: Providence, RI, USA, 2012. [Google Scholar]
- Haberman, R. Applied Partial Differential Equations with Fourier Series and Boundary Value Problems, 5th ed.; Pearson Higher Education: Boston, MA, USA, 2013. [Google Scholar]
- Guenther, R.B.; Lee, J.W. Sturm-Liouville Problems: Theory and Numerical Implementation; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Kravchenko, V.V. Direct and Inverse Sturm-Liouville Problems: A Method of Solution; Birkhäuser Verlag, Springer Nature: Cham, Switzerland, 2020. [Google Scholar]
- Masjed-Jamei, M. Special Functions and Generalized Sturm-Liouville Problems; Birkhäuser: Basel, Switzerland, 2020. [Google Scholar]
- Zettl, A. Recent Developments in Sturm-Liouville Theory; De Gruyter: Berlin, Germany; Boston, MA, USA, 2021. [Google Scholar]
- Al-Mdallal, Q.M. An efficient method for solving fractional Sturm–Liouville problems. Chaos Solitons Fractals 2009, 40, 183–189. [Google Scholar] [CrossRef]
- Klimek, M.; Agrawal, O.P. Fractional Sturm–Liouville problem. Comput. Math. Appl. 2013, 66, 795–812. [Google Scholar] [CrossRef]
- Zayernouri, M.; Karniadakis, G.E. Fractional Sturm–Liouville eigen-problems: Theory and numerical approximation. J. Comput. Phys. 2013, 252, 495–517. [Google Scholar] [CrossRef]
- Buterin, S.A. On the reconstruction of a non-selfadjoint Sturm-Liouville operator. Mat. Mekhanika 2000, 2, 10–13. [Google Scholar]
- Buterin, S.A. On inverse spectral problem for non-selfadjoint Sturm–Liouville operator on a finite interval. J. Math. Anal. Appl. 2007, 335, 739–749. [Google Scholar] [CrossRef]
- Chanane, B. Computing the spectrum of non-self-adjoint Sturm–Liouville problems with parameter-dependent boundary conditions. J. Comput. Appl. Math. 2007, 206, 229–237. [Google Scholar] [CrossRef]
- Veliev, O.A. Non-self-adjoint Sturm-Liouville operators with matrix potentials. Math. Notes 2007, 81, 440–448. [Google Scholar] [CrossRef]
- Albeverio, S.; Hryniv, R.; Mykytyuk, Y. On spectra of non-self-adjoint Sturm–Liouville operators. Sel. Math. 2008, 13, 571–599. [Google Scholar] [CrossRef]
- Buterin, S.A.; Shieh, C.T.; Yurko, V.A. Inverse spectral problems for non-selfadjoint second-order differential operators with Dirichlet boundary conditions. Bound. Value Probl. 2013, 2013, 180. [Google Scholar] [CrossRef]
- Buterin, S.; Kuznetsova, M. On Borg’s method for non-selfadjoint Sturm–Liouville operators. Anal. Math. Phys. 2019, 9, 2133–2150. [Google Scholar] [CrossRef]
- Behrndt, J.; Katatbeh, Q.; Trunk, C. Accumulation of complex eigenvalues of indefinite Sturm–Liouville operators. J. Phys. A Math. Theor. 2008, 41, 244003. [Google Scholar] [CrossRef]
- Xie, B.; Qi, J. Non-real eigenvalues of indefinite Sturm–Liouville problems. J. Differ. Equ. 2013, 255, 2291–2301. [Google Scholar] [CrossRef]
- Levitin, M.; Seri, M. Accumulation of complex eigenvalues of an indefinite Sturm–Liouville operator with a shifted Coulomb potential. arXiv 2015, arXiv:1503.08615. [Google Scholar] [CrossRef]
- Sager, H.C. The Sturm-Liouville equation with time-dependent boundary conditions. J. Math. Anal. Appl. 1984, 102, 275–287. [Google Scholar] [CrossRef]
- Binding, P.A.; Browne, P.J.; Seddighi, K. Sturm–Liouville problems with eigenparameter dependent boundary conditions. Proc. Edinb. Math. Soc. 1994, 37, 57–72. [Google Scholar] [CrossRef]
- Štikonas, A. The Sturm-Liouville problem with a nonlocal boundary condition. Lith. Math. J. 2007, 47, 336–351. [Google Scholar] [CrossRef]
- Adam, J. Rays, Waves, and Scattering: Topics in Classical Mathematical Physics; Princeton University Press: Princeton, NJ, USA, 2017. [Google Scholar]
- Birkhoff, G.; Rota, G.-C. Ordinary Differential Equations, 4th ed.; John Wiley & Sons: New York, NJ, USA, 1989. [Google Scholar]
- Everitt, W.N. On the transformation theory of ordinary second-order linear symmetric differential expressions. Czechoslov. Math. J. 1982, 32, 275–306. [Google Scholar] [CrossRef]
- Paine, J.W.; de Hoog, F.R.; Anderssen, R.S. On the correction of finite difference eigenvalue approximations for Sturm-Liouville problems. Computing 1981, 26, 123–139. [Google Scholar] [CrossRef]
- Ledoux, V. Study of Special Algorithms for Solving Sturm-Liouville and Schrödinger Equations. Doctoral Dissertation, Ghent University, Ghent, Belgium, 2007. [Google Scholar]
- Ixaru, L.G.; De Meyer, H.; Berghe, G.V. SLCPM12—A program for solving regular Sturm–Liouville problems. Comput. Phys. Commun. 1999, 118, 259–277. [Google Scholar] [CrossRef]
- Everitt, W.N. A catalogue of Sturm-Liouville differential equations. In Sturm-Liouville Theory: Past and Present; Amrein, W.O., Hinz, A.M., Pearson, D.B., Eds.; Birkhäuser Verlag: Basel, Switzerland, 2005; pp. 271–331. [Google Scholar]
- Buterin, S.A.; Yang, C.F.; Yurko, V.A. On an open question in the inverse transmission eigenvalue problem. Inverse Probl. 2015, 31, 045003. [Google Scholar] [CrossRef]
- Aktosun, T.; Gintides, D.; Papanicolaou, V.G. The uniqueness in the inverse problem for transmission eigenvalues for the spherically symmetric variable-speed wave equation. Inverse Probl. 2011, 27, 115004. [Google Scholar] [CrossRef]
- Karjanto, N. Perturbed potential temperature field in the atmospheric boundary layer. ZAMM-J. Appl. Math. Mech. Angew. Math. Mech. 2022, 102, e202100484. [Google Scholar] [CrossRef]
- Karjanto, N. On modified second Paine–de Hoog–Anderssen boundary value problem. Symmetry 2022, 14, 54. [Google Scholar] [CrossRef]
- Arnold, D.N.; David, G.; Filoche, M.; Jerison, D.; Mayboroda, S. Computing spectra without solving eigenvalue problems. SIAM J. Sci. Comput. 2019, 41, B69–B92. [Google Scholar] [CrossRef]
- Filoche, M.; Mayboroda, S. Universal mechanism for Anderson and weak localization. Proc. Natl. Acad. Sci. USA 2012, 109, 14761–14766. [Google Scholar] [CrossRef]
- Liouville, J. Second mémoire sur le développement des fonctions ou parties de fonctions en séries dont les divers termes sont assujettis à satisfaire à une même équation différentielle du second ordre, contenant un paramètre variable. (Second dissertation on the development of functions or parts of functions in series whose various terms are subject to satisfying the same second order differential equation, containing a variable parameter). J. Math. Pures Appl. J. Pure Appl. Math. 1837, 2, 16–35. (In French) [Google Scholar]
- Bowman, F. Introduction to Bessel Functions; Dover: New York, NY, USA, 1958. [Google Scholar]
- Gray, A.; Mathews, G.B. A Treatise on Bessel Functions and Their Applications to Physics; Macmillan and Co.: London, UK, 1895. [Google Scholar]
- Erdélyi, A. Higher Transcendental Functions, Volume 2; McGraw-Hill: New York, NY, USA, 1953. [Google Scholar]
- Watson, G.N. A Treatise on the Theory of Bessel Functions, 2nd ed.; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Korenev, B.G. Bessel Functions and Their Applications; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical Recipes: The Art of Scientific Computing, 3rd ed.; Cambridge University Press: New York, NY, USA, 2007. [Google Scholar]
- Nambudiripad, K.B.M. Bessel Functions; Alpha Science International Limited: Oxford, UK, 2014. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karjanto, N.; Sadhani, P. Unraveling the Complexity of Inverting the Sturm–Liouville Boundary Value Problem to Its Canonical Form. Mathematics 2024, 12, 1329. https://doi.org/10.3390/math12091329
Karjanto N, Sadhani P. Unraveling the Complexity of Inverting the Sturm–Liouville Boundary Value Problem to Its Canonical Form. Mathematics. 2024; 12(9):1329. https://doi.org/10.3390/math12091329
Chicago/Turabian StyleKarjanto, Natanael, and Peter Sadhani. 2024. "Unraveling the Complexity of Inverting the Sturm–Liouville Boundary Value Problem to Its Canonical Form" Mathematics 12, no. 9: 1329. https://doi.org/10.3390/math12091329
APA StyleKarjanto, N., & Sadhani, P. (2024). Unraveling the Complexity of Inverting the Sturm–Liouville Boundary Value Problem to Its Canonical Form. Mathematics, 12(9), 1329. https://doi.org/10.3390/math12091329