The Dual Hamilton–Jacobi Equation and the Poincaré Inequality
Abstract
1. Introduction
2. The Logarithmic Sobolev Inequalities and the Dual Hamilton–Jacobi Equations
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gross, L. Logarithmic Sobolev inequalities. Am. J. Math. 1975, 97, 1061–1083. [Google Scholar] [CrossRef]
- Bobkov, S.G.; Gentil, I.; Ledoux, M. Hypercontractivity of Hamilton-Jacobi equations. J. Math. Pures Appl. 2001, 80, 669–696. [Google Scholar] [CrossRef]
- Gentil, I. Ultracontractive bounds on Hamilton-Jacobi equations. Bull. Sci. Math. 2002, 126, 507–524. [Google Scholar] [CrossRef]
- Gentil, I. The general optimal Lp-Euclidean logarithmic Sobolev inequality by Hamilton-Jacobi equations. J. Funct. Anal. 2003, 202, 591–599. [Google Scholar] [CrossRef]
- Otto, F.; Villani, C. Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. J. Funct. Anal. 2000, 173, 361–400. [Google Scholar] [CrossRef]
- Bez, N.; Nakamura, S.; Tsuji, H. Stability of hypercontractivity, the logarithmic Sobolev inequality, and Talagrand’s cost inequality. J. Funct. Anal. 2023, 285, 110121. [Google Scholar] [CrossRef]
- Artstein-Avidan, S.; Klartag, B.; Schütt, C.; Werner, E. Functional affine-isoperimetry and an inverse logarithmic Sobolev inequality. J. Funct. Anal. 2012, 262, 4181–4204. [Google Scholar] [CrossRef]
- Caglar, U.; Fradelizi, M.; Guédon, O.; Lehec, J.; Schütt, C.; Werner, E.M. Functional Versions of Lp-Affine Surface Area and Entropy Inequalities. Int. Math. Res. 2016, 4, 1223–1250. [Google Scholar] [CrossRef]
- Caglar, U.; Werner, E.M. Divergence for s-concave and log concave functions. Adv. Math. 2014, 257, 219–247. [Google Scholar] [CrossRef]
- Beckner, W. Geometric asymptotics and the logarithmic Sobolev inequality. Forum Math. 1999, 11, 105–137. [Google Scholar] [CrossRef]
- Brascamp, H.J.; Lieb, E.H. On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation. J. Funct. Anal. 1976, 22, 366–389. [Google Scholar] [CrossRef]
- Gross, L. Hypercontractivity and logarithmic Sobolev inequalities for the Clifford-Dirichlet form. Duke Math. J. 1975, 42, 383–396. [Google Scholar] [CrossRef]
- Gross, L. Hypercontractivity, logarithmic Sobolev inequalities, and applications: A survey of surveys, in: Diffusion. Quantum Theory Radically Elem. Math. 2014, 47, 45–73. [Google Scholar]
- Ledoux, M. Concentration of measure and logarithmic Sobolev inequalities. Lect. Notes Math. 1999, 1709, 120–216. [Google Scholar]
- Ledoux, M. The Concentration of Measure Phenomenon; No. 89; American Mathematical Society: Providence, RI, USA, 2005. [Google Scholar]
- Milman, E. On the role of convexity in isoperimetry, spectral gap and concentration. Invent. Math. 2009, 177, 1–43. [Google Scholar] [CrossRef]
- Milman, E.; Sodin, S. An isoperimetric inequality for uniformly log-concave measures and uniformly convex bodies. J. Funct. Anal. 2008, 254, 1235–1268. [Google Scholar] [CrossRef]
- Milman, E.; Udayoff, A. Sharp isoperimetric inequalities for affine quermassintegrals. J. Am. Math. Soc. 2023, 36, 1061–1101. [Google Scholar]
- Milman, E.; Rotem, L. Complemented Brunn-Minkowski inequalities and isoperimetry for homogeneous and non-homogeneous measures. Adv. Math. 2014, 262, 867–908. [Google Scholar] [CrossRef]
- Werner, E.; Ye, D. New Lp affine isoperimetric inequalities. Adv. Math. 2008, 218, 762–780. [Google Scholar] [CrossRef]
- Zhang, G. The affine Sobolev inequality. J. Differ. Geom. 1999, 53, 183–202. [Google Scholar] [CrossRef]
- Beckner, W.; Pearson, M. On sharp Sobolev embedding and the logarithmic Sobolev inequality. Bull. Lond. Math. Soc. 1998, 30, 80–84. [Google Scholar] [CrossRef]
- Federbush, P. Partially alternate derivation of a result of Nelson. J. Math. Phys. 1969, 10, 50–52. [Google Scholar] [CrossRef]
- Stam, A.J. Some inequalities satisfied by the quantities of information of Fisher and Shannon. Inform. Control 1959, 2, 101–112. [Google Scholar] [CrossRef]
- Barles, G. Solutions De Viscosité Des Équations De Hamilton-Jacobi; Springer: Paris, France, 1994. [Google Scholar]
- Evans, L.C. Partial Differential Equations; American Mathematical Society: Providence, RI, USA, 1998. [Google Scholar]
- Chen, F.; Zhou, J.; Yang, C. On the reverse Orlicz Busemann–Petty centroid inequality. Adv. Appl. Math. 2011, 47, 820–828. [Google Scholar] [CrossRef]
- Chen, S.; Huang, Y.; Li, Q.-R.; Liu, J. The Lp-Brunn-Minkowski inequality for p < 1. Adv. Math. 2020, 368, 107166. [Google Scholar]
- Chen, S.; Feng, Y.; Liu, W. Uniqueness of solutions to the logarithmic Minkowski problem in R3. Adv. Math. 2022, 411, 108782. [Google Scholar] [CrossRef]
- Fang, N.; Zhou, J. LYZ ellipsoid and Petty projection body for log-concave functions. Adv. Math. 2018, 340, 914–959. [Google Scholar] [CrossRef]
- Fang, N.; Xing, S.; Ye, D. Geometry of log-concave functions: The Lp Asplund sum and the Lp Minkowski problem. Calc. Var. Partial. Differ. Equ. 2022, 61, 45. [Google Scholar] [CrossRef]
- Gardner, R.J. A positive answer to the Busemann-Petty problem in three dimensions. Ann. Math. 1994, 140, 435–447. [Google Scholar] [CrossRef]
- Gardner, R.J.; Koldobsky, A.; Schlumprecht, T. An analytical solution to the Busemann-Petty problem on sections of convex bodies. Ann. Math. 1999, 149, 691–703. [Google Scholar] [CrossRef]
- Gardner, R.J. Geometric Tomography, 2nd ed.; Cambridge University Press: New York, NY, USA, 2006. [Google Scholar]
- Guo, L.; Xi, D.; Zhao, Y. The Lp chord Minkowski problem in a critical interval. Math. Ann. 2024, 389, 3123–3162. [Google Scholar] [CrossRef]
- He, B.; Leng, G.; Li, K. Projection problems for symmetric polytopes. Adv. Math. 2006, 207, 73–90. [Google Scholar] [CrossRef]
- He, R.; Leng, G. A strong law of large numbers on the harmonic p-combination. Geom. Dedicata 2011, 154, 103–116. [Google Scholar] [CrossRef]
- He, R.; Leng, G. Radial p-th moment of a random vector. Math. Inequal. Appl. 2015, 18, 629–638. [Google Scholar] [CrossRef]
- He, R.; Chen, B.; Wang, W. The functional form of the dual mixed volume. Adv. Appl. Math. 2022, 134, 102305. [Google Scholar] [CrossRef]
- Huang, Q.; Li, A.; Xi, D.; Ye, D. On the sine polarity and the Lp-sine Blaschke-Santaló inequality. J. Funct. Anal. 2022, 283, 109571. [Google Scholar] [CrossRef]
- Huang, Y.; Lutwak, E.; Yang, D.; Zhang, G. Geometric measures in the dual Brunn-Minkowski theory and their associated minkowski problems. Acta Math. 2016, 216, 325–388. [Google Scholar] [CrossRef]
- Huang, Y.; Xi, D.; Zhao, Y. The Minkowski problem in Gaussian probability space. Adv. Math. 2021, 385, 107769. [Google Scholar] [CrossRef]
- Jian, H.; Lu, J. Existence of solutions to the Orlicz-Minkowski problem. Adv. Math. 2019, 344, 262–288. [Google Scholar] [CrossRef]
- Kolesnikov, A.V.; Werner, E.M. Blaschke-Santaló inequality for many functions and geodesic barycenters of measures. Adv. Math. 2022, 396, 108110. [Google Scholar] [CrossRef]
- Li, A.-J.; Huang, Q.; Xi, D. New sine ellipsoids and related volume inequalities. Adv. Math. 2019, 353, 281–311. [Google Scholar] [CrossRef]
- Li, J.; Leng, G. Lp Minkowski valuations on polytopes. Adv. Math. 2016, 299, 139–173. [Google Scholar] [CrossRef]
- Li, J.; Ma, D. Laplace transforms and valuations. J. Funct. Anal. 2017, 272, 738–758. [Google Scholar] [CrossRef]
- Ye, N.L.D.; Zhu, B. The dual Minkowski problem for unbounded closed convex sets. Math. Ann. 2023, 2570, 2001–2039. [Google Scholar]
- Li, Q.-R.; Sheng, W.; Wang, X.-J. Flow by Gauss curvature to the Aleksandrov and dual Minkowski problems. J. Eur. Math. Soc. 2020, 22, 893–923. [Google Scholar] [CrossRef]
- Lin, Y. Affine Orlicz Pólya-Szegö principle for log-concave functions. J. Funct. Anal. 2017, 273, 3295–3326. [Google Scholar] [CrossRef]
- Lin, Y.; Xi, D. Affine Orlicz Polya-Szego principles and the cases of equality. Int. Math. Res. Not. 2021, 9, 7159–7204. [Google Scholar] [CrossRef]
- Ludwig, M. Intersection bodies and valuations. Am. J. Math. 2006, 128, 1409–1428. [Google Scholar] [CrossRef]
- Ludwig, M.; Reitzner, M. A classification of SL(n) invariant valuations. Ann. Math. 2010, 172, 1219–1267. [Google Scholar] [CrossRef]
- Lutwak, E.; Lv, S.; Yang, D.; Zhang, G. Extensions of Fisher Information and Stam’s Inequality. IEEE Trans. Inform. Theory 2012, 58, 1319–1327. [Google Scholar] [CrossRef]
- Lu, X.; Tao, J.; Xiong, G. Sections of convex bodies and Hanner polytopes. Math Ann. 2024. [Google Scholar] [CrossRef]
- Lutwak, E.; Xi, D.; Yang, D.; Zhang, G. Chord measures in integral geometry and their Minkowski problems. Comm. Pure Appl. Math. 2024, 2024, 3277–3330. [Google Scholar]
- Ma, D. Moment matrices and SL(n) equivariant valuations on polytopes. Int. Math. Res. Not. 2019, 2021, 10469–10489. [Google Scholar]
- Ma, X.; Trudinger, N.; Wang, X. Regularity of potential functions of the optimal transportation problem. Arch. Rational Mech. Anal. 2005, 177, 151–183. [Google Scholar] [CrossRef]
- Paouris, G.; Werner, E.M. Relative entropy of cone measures and Lp centroid bodies. Proc. Lond. Math. Soc. 2012, 104, 253–286. [Google Scholar]
- Papini, P.; Wu, S. Constructions of complete sets. Adv. Geom. 2015, 15, 485–498. [Google Scholar] [CrossRef]
- Roysdon, M.; Xing, S. On Lp-Brunn-Minkowski type and Lp-isoperimetric type inequalities for measures. Trans. Amer. Math. Soc. 2021, 374, 5003–5036. [Google Scholar]
- Roysdon, M.; Xing, S. On the framework of Lp summations for functions. J. Funct. Anal. 2023, 12, 110150. [Google Scholar]
- Schneider, R. Convex Bodies: The Brunn-Minkowski Theory; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Wang, W.; He, R. Inequalities for mixed complex projection bodies. Taiwan. J. Math. 2013, 17, 1887–1899. [Google Scholar] [CrossRef]
- Wang, W.; He, R.; Yuan, J. On mixed complex intersection bodies. Math. Inequal. Appl. 2015, 18, 419–428. [Google Scholar] [CrossRef]
- Wang, W.; He, R.; Liu, L. SL(n)-covariant vector-valued valuations on Lp-spaces. Ann. Math. Que 2021, 45, 465–486. [Google Scholar]
- Wang, W.; He, R. The discrete logarithmic Minkowski problem for q-capacity. J. Math. Anal. Appl. 2022, 511, 126101. [Google Scholar]
- Wang, W.; Li, J.; He, R.; Liu, L. The Functional Orlicz Brunn-Minkowski Inequality for q-Capacity. J. Funct. Space 2020, 2020, 1670617. [Google Scholar]
- Wang, W. SL(n) equivariant matrix-valued valuations on polytopes. Int. Math. Res. Not. 2022, 13, 10302–10346. [Google Scholar]
- Wu, S.; He, C.; Yang, G. Orthogonalities, linear operators, and characterization of inner product spaces. Aequat. Math. 2017, 91, 969–978. [Google Scholar]
- Xi, D.; Jin, H.; Leng, G. The Orlicz Brunn–Minkowski inequality. Adv. Math. 2014, 260, 350–374. [Google Scholar]
- Xi, D.; Leng, G. Dar’s conjecture and the log–Brunn–Minkowski inequality. J. Differ. Geom. 2016, 103, 145–189. [Google Scholar]
- Xiong, G. Extremum problems for the cone volume functional of convex polytopes. Adv. Math. 2010, 225, 3214–3228. [Google Scholar]
- Xiong, G.; Xiong, J.; Xu, L. The Lp capacitary Minkowski problem for polytopes. J. Funct. Anal. 2019, 277, 3131–3155. [Google Scholar]
- Xu, W.; Zhou, J.; Zhu, B. On Bonnesen-type inequalities for a surface of constant curvature. Proc. Am. Math. Soc. USA 2015, 143, 4925–4935. [Google Scholar] [CrossRef]
- Zhang, N. On bodies with congruent sections by cones or non-central planes. Trans. Am. Math. Soc. 2018, 370, 8739–8756. [Google Scholar]
- Zhao, C. On Blaschke–Minkowski Homomorphisms and Radial Blaschke–Minkowski Homomorphisms. J. Geom. Anal. 2016, 26, 1523–1538. [Google Scholar]
- Zhu, B.; Zhou, J.; Xu, W. Dual Orlicz–Brunn–Minkowski theory. Adv. Math. 2014, 264, 700–725. [Google Scholar]
- Zong, C. The Cube: A Window to Convex and Discrete Geometry; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Zong, C. The simultaneous packing and covering constants in the plane. Adv. Math. 2008, 218, 653–672. [Google Scholar]
- Zong, C. What is the Leech lattice? Notices Am. Math. Soc. 2013, 60, 168–1169. [Google Scholar]
- Zou, D.; Xiong, G. Orlicz–John ellipsoids. Adv. Math. 2014, 265, 132–168. [Google Scholar]
- Zou, D.; Xiong, G. The Lp Minkowski problem for the electrostatic capacity. J. Differ. Geom. 2020, 116, 555–596. [Google Scholar]
- Dolbeault, J.; Nazaret, B.; Savaré, G. From Poincaré to logarithmic Sobolev inequalities: A gradient flow approach. SIAM J. Math. Anal. 2012, 44, 3186–3216. [Google Scholar]
- Menz, G.; Schlichting, A. Poincaré and logarithmic sobolev inequalities by decomposition of the energy landscape. Ann. Probab. 2014, 42, 1809–1884. [Google Scholar]
- Prato, G.D.; Goldys, B. Elliptic operators on Rd with unbounded coefficients. J. Differ. Equations 2001, 172, 333–358. [Google Scholar]
- Rothaus, O.S. Logarithmic Sobolev inequalities and the spectrum of Schro¨dinger operators. J. Funct. Anal. 1981, 42, 110–120. [Google Scholar] [CrossRef]
- Bakry, D.; Émery, M. Diffusions hypercontractives. In Séminaire de Probabilités XIX 1983/84: Proceedings; Springer: Berlin, Germany, 1985; Volume 1123, pp. 177–206. [Google Scholar]
- Bobkov, S.G.; Ledoux, M. From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities. Geom. Funct. Anal. 2000, 10, 1028–1052. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, R.; Wang, W.; Fang, J.; Li, Y. The Dual Hamilton–Jacobi Equation and the Poincaré Inequality. Mathematics 2024, 12, 3927. https://doi.org/10.3390/math12243927
He R, Wang W, Fang J, Li Y. The Dual Hamilton–Jacobi Equation and the Poincaré Inequality. Mathematics. 2024; 12(24):3927. https://doi.org/10.3390/math12243927
Chicago/Turabian StyleHe, Rigao, Wei Wang, Jianglin Fang, and Yuanlin Li. 2024. "The Dual Hamilton–Jacobi Equation and the Poincaré Inequality" Mathematics 12, no. 24: 3927. https://doi.org/10.3390/math12243927
APA StyleHe, R., Wang, W., Fang, J., & Li, Y. (2024). The Dual Hamilton–Jacobi Equation and the Poincaré Inequality. Mathematics, 12(24), 3927. https://doi.org/10.3390/math12243927