Electrochemical–Thermal Fluid Coupled Analysis and Statistical Analysis of Cooling System for Large Pouch Cells
Abstract
:1. Introduction
2. Electrochemical–Thermal Fluid Coupled Model of Large-Format Pouch Cell Module Cooling System
2.1. 2P6S Pouch Type Large-Format Pouch Cell Module
2.2. Electrochemical–Thermal Coupled Model of 65 Ah Pouch Cell
2.3. Thermal Fluid Model
2.4. Conditions of Electrochemical–Thermal Fluid Coupled Analysis
3. Statistical Analysis for the Effects of Design Factors on Performance of Battery Cooling System
3.1. Design Factors and Responses
3.2. Five-Level Full Factorial Design
3.3. Analysis of Variance (ANOVA)
4. Result and Discussion
4.1. Five-Level FFD Results
4.2. Results of Statistical Analysis Using ANOVA
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Haddadian, G.; Khodayar, M.; Shahidehpour, M. Accelerating the Global Adoption of Electric Vehicles: Barriers and Drivers. Electr. J. 2015, 28, 53–68. [Google Scholar] [CrossRef]
- Kennedy, B.; Patterson, D.; Camilleri, S. Use of lithium-ion batteries in electric vehicles. J. Power Sources 2000, 90, 156–162. [Google Scholar] [CrossRef]
- Lee, D.C.; Lee, J.J.; Kim, J.S.; Cho, S.; Kim, C.W. Thermal Behaviors Analysis of 55 Ah Large-Format Lithium-Ion Pouch Cells with Different Cell Aspect Ratios, Tab Locations, and C-Rates. Appl. Therm. Eng. 2020, 175, 115422. [Google Scholar] [CrossRef]
- Ma, S.; Jiang, M.; Tao, P.; Song, C.; Wu, J.; Wang, J.; Deng, T.; Shang, W. Temperature Effect and Thermal Impact in Lithium-Ion Batteries: A Review. Prog. Nat. Sci. Mater. Int. 2018, 28, 653–666. [Google Scholar] [CrossRef]
- Waldmann, T.; Wilka, M.; Kasper, M.; Fleischhammer, M.; Wohlfahrt-Mehrens, M. Temperature Dependent Ageing Mechanisms in Lithium-Ion Batteries—A Post-Mortem Study. J. Power Sources 2014, 262, 129–135. [Google Scholar] [CrossRef]
- Akbarzadeh, M.; Kalogiannis, T.; Jaguemont, J.; Jin, L.; Behi, H.; Karimi, D.; Beheshti, H.; Van Mierlo, J.; Berecibar, M. A Comparative Study between Air Cooling and Liquid Cooling Thermal Management Systems for a High-Energy Lithium-Ion Battery Module. Appl. Therm. Eng. 2021, 198, 117503. [Google Scholar] [CrossRef]
- Zhang, Z.; Fu, L.; Sheng, L.; Ye, W.; Sun, Y. Method of Liquid-Cooled Thermal Control for a Large-Scale Pouch Lithium-Ion Battery. Appl. Therm. Eng. 2022, 211, 118417. [Google Scholar] [CrossRef]
- Kausthubharam; Koorata, P.K.; Panchal, S. Thermal Management of Large-Sized LiFePO4 Pouch Cell Using Simplified Mini-Channel Cold Plates. Appl. Therm. Eng. 2023, 234, 121286. [Google Scholar] [CrossRef]
- Li, Y.; Bai, M.; Zhou, Z.; Wu, W.T.; Gao, L.; Li, Y.; Yang, Y.; Li, Y.; Song, Y. Numerical Simulations for Lithium-Ion Battery Pack Cooled by Different Minichannel Cold Plate Arrangements. Int. J. Energy Res. 2023, 2023, 8207527. [Google Scholar] [CrossRef]
- Li, D.; Zuo, W.; Li, Q.; Zhang, G.; Zhou, K.; E, J. Effects of Pulsating Flow on the Performance of Multi-Channel Cold Plate for Thermal Management of Lithium-Ion Battery Pack. Energy 2023, 273, 127250. [Google Scholar] [CrossRef]
- Li, H.; Liu, C.; Saini, A.; Wang, Y.; Jiang, H.; Yang, T.; Chen, L.; Pan, C.; Shen, H. Coupling Multi-Physics Simulation and Response Surface Methodology for the Thermal Optimization of Ternary Prismatic Lithium-Ion Battery. J. Power Sources 2019, 438, 226974. [Google Scholar] [CrossRef]
- Hosseinzadeh, E.; Marco, J.; Jennings, P. Electrochemical-Thermal Modelling and Optimisation of Lithium-Ion Battery Design Parameters Using Analysis of Variance. Energies 2017, 10, 1278. [Google Scholar] [CrossRef]
- Lee, J.J.; Kim, J.S.; Chang, H.K.; Lee, D.C.; Kim, C.W. The Effect of Tab Attachment Positions and Cell Aspect Ratio on Temperature Difference in Large-Format Libs Using Design of Experiments. Energies 2021, 14, 116. [Google Scholar] [CrossRef]
- Ling, Z.; Cao, J.; Zhang, W.; Zhang, Z.; Fang, X.; Gao, X. Compact Liquid Cooling Strategy with Phase Change Materials for Li-Ion Batteries Optimized Using Response Surface Methodology. Appl. Energy 2018, 228, 777–788. [Google Scholar] [CrossRef]
- Ye, B.; Rubel, M.R.H.; Li, H. Design and Optimization of Cooling Plate for Battery Module of an Electric Vehicle. Appl. Sci. 2019, 9, 754. [Google Scholar] [CrossRef]
- Rangappa, R.; Rajoo, S. Effect of Thermo-Physical Properties of Cooling Mass on Hybrid Cooling for Lithium-Ion Battery Pack Using Design of Experiments. Int. J. Energy Environ. Eng. 2019, 10, 67–83. [Google Scholar] [CrossRef]
- Wang, J.; Liu, X.; Liu, F.; Liu, Y.; Wang, F.; Yang, N. Numerical Optimization of the Cooling Effect of the Bionic Spider-Web Channel Cold Plate on a Pouch Lithium-Ion Battery. Case Stud. Therm. Eng. 2021, 26, 101124. [Google Scholar] [CrossRef]
- Guo, R.; Li, L. Heat Dissipation Analysis and Optimization of Lithium-Ion Batteries with a Novel Parallel-Spiral Serpentine Channel Liquid Cooling Plate. Int. J. Heat Mass Transf. 2022, 189, 122706. [Google Scholar] [CrossRef]
- Adeniran, A.; Park, S. Optimized Cooling and Thermal Analysis of Lithium-Ion Pouch Cell under Fast Charging Cycles for Electric Vehicles. J. Energy Storage 2023, 68, 107580. [Google Scholar] [CrossRef]
- Newman, J.; Tiedemann, W. Potential and Current Distribution in Electrochemical Cells: Interpretation of the Half-Cell Voltage Measurements as a Function of Reference-Electrode Location. J. Electrochem. Soc. 1993, 140, 1961–1968. [Google Scholar] [CrossRef]
- Gu, H. Mathematical Analysis of a Zn/NiOOH Cell. J. Electrochem. Soc. 1966, 130, 1459–1464. [Google Scholar] [CrossRef]
- Seong Kim, U.; Yi, J.; Shin, C.B.; Han, T.; Park, S. Modeling the Dependence of the Discharge Behavior of a Lithium-Ion Battery on the Environmental Temperature. J. Electrochem. Soc. 2011, 158, A611. [Google Scholar] [CrossRef]
- Kim, U.S.; Yi, J.; Shin, C.B.; Han, T.; Park, S. Modelling the Thermal Behaviour of a Lithium-Ion Battery during Charge. J. Power Sources 2011, 196, 5115–5121. [Google Scholar] [CrossRef]
- Kim, G.-H.; Smith, K.; Lee, K.-J.; Santhanagopalan, S.; Pesaran, A. Multi-Domain Modeling of Lithium-Ion Batteries Encompassing Multi-Physics in Varied Length Scales. J. Electrochem. Soc. 2011, 158, A955. [Google Scholar] [CrossRef]
- Li, P.; Ma, Y.; Wang, Z.; Jia, X.; Ding, H.; Wang, P.; Gao, J. A Low-Cost and Lightweight Thermal Management System for Lithium-Ion Battery Modules Based on Composite PCM under Normal EV Operating Conditions. J. Phys. Conf. Ser. 2022, 2350, 012003. [Google Scholar] [CrossRef]
- Román-Ramírez, L.A.; Marco, J. Design of Experiments Applied to Lithium-Ion Batteries: A Literature Review. Appl. Energy 2022, 320, 119305. [Google Scholar] [CrossRef]
- Qian, Z.; Li, Y.; Rao, Z. Thermal Performance of Lithium-Ion Battery Thermal Management System by Using Mini-Channel Cooling. Energy Convers. Manag. 2016, 126, 622–631. [Google Scholar] [CrossRef]
- Animasaun, I.L.; Shah, N.A.; Wakif, A.; Mahanthesh, B.; Sivaraj, R.; Koriko, O.K. Ratio of Momentum Diffusivity to Thermal Diffusivity: Introduction, Meta-Analysis, and Scrutinization; Chapman and Hall/CRC: Boca Raton, FL, USA, 2022. [Google Scholar] [CrossRef]
Materials | Density (kg/m3) | Thermal Conductivity (W/m⋅K) | Specific Heat (J/kg⋅K) | Viscosity Coefficient (kg/m⋅s) |
---|---|---|---|---|
Pouch cell [19] | 2630.7 | In-plane: 28.706 Normal: 1.394 | 954 | - |
Copper | 8978 | 381 | 387.6 | - |
Aluminum | 2719 | 871 | 202.4 | - |
50 Ethylene glycol | 1071.11 | 0.384 | 3300 | 0.00339 |
Design Factors | Upper Bounds | Lower Bounds |
---|---|---|
n | 2 | 6 |
wchannel (mm) | 80 | 140 |
wwall | 0.2 | 0.6 |
t (mm) | 10 | 30 |
Design Factors | 1st Level | 2nd Level | 3rd Level | 4th Level | 5th Level |
---|---|---|---|---|---|
n | 2 | 3 | 4 | 5 | 6 |
wchannel (mm) | 80 | 95 | 110 | 125 | 140 |
wwall | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 |
t (mm) | 10 | 15 | 20 | 25 | 30 |
Source | Sum of Squares | Degrees of Freedom | Mean Square | F-Value | Percent Contribution | p-Value |
---|---|---|---|---|---|---|
n | 0.18988 | 4 | 0.04747 | 1220.06 | 7.31% | <0.05 |
wchannel | 0.79786 | 4 | 0.19947 | 5126.58 | 30.72% | <0.05 |
wwall | 0.93507 | 4 | 0.23377 | 6008.19 | 36.00% | <0.05 |
t | 0.27986 | 4 | 0.06996 | 1798.19 | 10.77% | <0.05 |
n:wchannel | 0.02689 | 16 | 0.00168 | 43.19 | 1.04% | <0.05 |
n:wwall | 0.00502 | 16 | 0.00031 | 8.06 | 0.19% | <0.05 |
n:t | 0.00156 | 16 | 0.0001 | 2.51 | 0.06% | <0.05 |
wchannel:wwall | 0.02077 | 16 | 0.0013 | 33.37 | 0.80% | <0.05 |
wchannel:t | 0.20709 | 16 | 0.01294 | 332.66 | 7.97% | <0.05 |
wwalll:t | 0.11347 | 16 | 0.00709 | 182.28 | 4.37% | <0.05 |
Error | 0.01992 | 512 | 0.00004 |
Source | Sum of Squares | Degrees of Freedom | Mean Square | F-Value | Percent Contribution | p-Value |
---|---|---|---|---|---|---|
n | 0.05333 | 4 | 0.01333 | 590.38 | 3.11% | <0.05 |
wchannel | 0.65672 | 4 | 0.16418 | 7270.63 | 38.24% | <0.05 |
wwall | 0.13284 | 4 | 0.03321 | 1470.65 | 7.73% | <0.05 |
t | 0.49593 | 4 | 0.12398 | 5490.59 | 28.88% | <0.05 |
n:wchannel | 0.01263 | 16 | 0.00079 | 34.96 | 0.74% | <0.05 |
n:wwall | 0.00877 | 16 | 0.00055 | 24.28 | 0.51% | <0.05 |
n:t | 0.01659 | 16 | 0.00104 | 45.93 | 0.97% | <0.05 |
wchannel:wwall | 0.00708 | 16 | 0.00044 | 19.58 | 0.41% | <0.05 |
wchannel:t | 0.27298 | 16 | 0.01706 | 755.56 | 15.90% | <0.05 |
wwalll:t | 0.04899 | 16 | 0.00306 | 135.59 | 2.85% | <0.05 |
Error | 0.01156 | 512 | 0.00002 |
Source | Sum of Squares | Degrees of Freedom | Mean Square | F-Value | Percent Contribution | p-Value |
---|---|---|---|---|---|---|
n | 673,478.4 | 4 | 168,369.6 | 3420.49 | 10.77% | <0.05 |
wchannel | 1,276,188 | 4 | 319,047.1 | 6481.57 | 20.40% | <0.05 |
wwall | 3,600,269 | 4 | 900,067.3 | 18,285.22 | 57.56% | <0.05 |
t | 0.4 | 4 | 0.1 | 0 | 0.00% | 1.000 |
n:wchannel | 60,502 | 16 | 3781.4 | 76.82 | 0.97% | <0.05 |
n:wwall | 127,049.5 | 16 | 7940.6 | 161.32 | 2.03% | <0.05 |
n:t | 1.6 | 16 | 0.1 | 0 | 0.00% | 1.000 |
wchannel:wwall | 492,314.7 | 16 | 30,769.7 | 625.1 | 7.87% | <0.05 |
wchannel:t | 4.3 | 16 | 0.3 | 0.01 | 0.00% | 1.000 |
wwalll:t | 5.6 | 16 | 0.4 | 0.01 | 0.00% | 1.000 |
Error | 25,202.6 | 512 | 49.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.; Park, S.; Kim, C.-W. Electrochemical–Thermal Fluid Coupled Analysis and Statistical Analysis of Cooling System for Large Pouch Cells. Mathematics 2024, 12, 3261. https://doi.org/10.3390/math12203261
Lee H, Park S, Kim C-W. Electrochemical–Thermal Fluid Coupled Analysis and Statistical Analysis of Cooling System for Large Pouch Cells. Mathematics. 2024; 12(20):3261. https://doi.org/10.3390/math12203261
Chicago/Turabian StyleLee, Hamin, Seokjun Park, and Chang-Wan Kim. 2024. "Electrochemical–Thermal Fluid Coupled Analysis and Statistical Analysis of Cooling System for Large Pouch Cells" Mathematics 12, no. 20: 3261. https://doi.org/10.3390/math12203261
APA StyleLee, H., Park, S., & Kim, C.-W. (2024). Electrochemical–Thermal Fluid Coupled Analysis and Statistical Analysis of Cooling System for Large Pouch Cells. Mathematics, 12(20), 3261. https://doi.org/10.3390/math12203261