Community-Aware Evolution Similarity for Link Prediction in Dynamic Social Networks
Abstract
:1. Introduction
2. Related Work
3. Evolutionary Community and Dynamic Similarity Metrics
3.1. Community Dynamicity
3.2. Time Series Forecasting
3.3. Dynamic Similarity Metrics
3.3.1. Temporal Similarity of Community Dynamicity
3.3.2. Correlation-Based Similarity
3.3.3. Temporal Community-Aware Network Structure
4. Experimental Settings
4.1. Network Datasets
4.2. Dynamic Networks
4.3. Supervised Link Prediction
4.4. The Classifiers
4.5. Performance Evaluation
5. Results
6. Discussion and Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Opsahl, T.; Hogan, B. Growth mechanisms in continuously-observed networks: Communication in a Facebook-like Community. arXiv 2010, arXiv:1010.2141. [Google Scholar]
- Liben-Nowell, D.; Kleinberg, J. The link prediction problem for social networks. In Proceedings of the Twelfth International Conference on Information and Knowledge Management, New Orleans, LA, USA, 3–8 November 2003; pp. 556–559. [Google Scholar]
- Lü, L.; Zhou, T. Link prediction in complex networks: A survey. Phys. A Stat. Mech. Its Appl. 2011, 390, 1150–1170. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, K.J.; Li, Y. A link prediction method that can learn from network dynamics. In Proceedings of the 2014 IEEE International Conference on Data Mining Workshop, Shenzhen, China, 14 December 2014; pp. 549–553. [Google Scholar]
- Li, T.; Wang, J.; Tu, M.; Zhang, Y.; Yan, Y. Enhancing link prediction using gradient boosting features. In Intelligent Computing Theories and Application; ICIC 2016. Lecture Notes in Computer Science; Huang, D.S., Jo, K.H., Eds.; Springer: Cham, Switzerland, 2016; Volume 9772. [Google Scholar] [CrossRef]
- Tylenda, T.; Angelova, R.; Bedathur, S. Towards time-aware link prediction in evolving social networks. In Proceedings of the 3rd Workshop on Social Network Mining and Analysis, Paris, France, 28 June 2009; pp. 1–10. [Google Scholar]
- Li, X.; Du, N.; Li, H.; Li, K.; Gao, J.; Zhang, A. A deep learning approach to link prediction in dynamic networks. In Proceedings of the 2014 SIAM International Conference on Data Mining, Philadelphia, PA, USA, 24–26 April 2014; SIAM: Philadelphia, PA, USA, 2014; pp. 289–297. [Google Scholar]
- Choudhury, N.; Uddin, S. Time-aware link prediction to explore network effects on temporal knowledge evolution. Scientometrics 2016, 108, 745–776. [Google Scholar] [CrossRef]
- Choudhury, N.; Uddin, S. Mining actor-level structural and neighborhood evolution for link prediction in dynamic networks. In Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, Sydney, NSW, Australia, 31 July–3 August 2017; pp. 721–728. [Google Scholar]
- Zhang, T.; Zhang, K.; Lv, L.; Li, X. Temporal link prediction using node centrality and time series. Int. J. Fut. Comput. Commun. 2020, 9, 62–65. [Google Scholar] [CrossRef]
- Chi, K.; Yin, G.; Dong, Y.; Dong, H. Link prediction in dynamic networks based on the attraction force between nodes. Knowl.-Based Syst. 2019, 181, 104792. [Google Scholar] [CrossRef]
- Bliss, C.A.; Frank, M.R.; Danforth, C.M.; Dodds, P.S. An evolutionary algorithm approach to link prediction in dynamic social networks. J. Comput. Sci. 2014, 5, 750–764. [Google Scholar] [CrossRef]
- Ahmed, N.M.; Chen, L. An efficient algorithm for link prediction in temporal uncertain social networks. Inf. Sci. 2016, 331, 120–136. [Google Scholar] [CrossRef]
- Jaya Lakshmi, T.; Durga Bhavani, S. Temporal probabilistic measure for link prediction in collaborative networks. Appl. Intell. 2017, 47, 83–95. [Google Scholar] [CrossRef]
- Safdari, H.; Contisciani, M.; De Bacco, C. Reciprocity, community detection, and link prediction in dynamic networks. J. Phys. Complex. 2022, 3, 015010. [Google Scholar] [CrossRef]
- Ma, X.; Sun, P.; Qin, G. Nonnegative matrix factorization algorithms for link prediction in temporal networks using graph communicability. Pattern Recognit. 2017, 71, 361–374. [Google Scholar] [CrossRef]
- Chen, J.; Lin, X.; Jia, C.; Li, Y.; Wu, Y.; Zheng, H.; Liu, Y. Generative dynamic link prediction. Chaos Interdiscip. J. Nonlinear Sci. 2019, 29, 123111. [Google Scholar] [CrossRef] [PubMed]
- Divakaran, A.; Mohan, A. Temporal link prediction: A survey. New Gener. Comput. 2020, 38, 213–258. [Google Scholar] [CrossRef]
- Da Silva Soares, P.R.; Prudêncio, R.B.C. Time series based link prediction. In Proceedings of the 2012 International Joint Conference on Neural Networks (IJCNN), Brisbane, QLD, Australia, 10–15 June 2012; pp. 1–7. [Google Scholar]
- Güneş, İ.; Gündüz-Öğüdücü, Ş.; Çataltepe, Z. Link prediction using time series of neighborhood-based node similarity scores. Data Min. Knowl. Discov. 2016, 30, 147–180. [Google Scholar] [CrossRef]
- Choudhury, N.; Uddin, S. Evolution similarity for dynamic link prediction in longitudinal networks. In Proceedings of the Complex Networks VIII: Proceedings of the 8th Conference on Complex Networks CompleNet, Dubrovnik, Croatia, 21–24 March 2017; Springer: Cham, Switzerland, 2017; pp. 109–118. [Google Scholar]
- Wu, X.; Wu, J.; Li, Y.; Zhang, Q. Link prediction of time-evolving network based on node ranking. Knowl.-Based Syst. 2020, 195, 105740. [Google Scholar] [CrossRef]
- Sajadmanesh, S.; Zhang, J.; Rabiee, H.R. NPGLM: A Non-Parametric Method for Temporal Link Prediction. arXiv 2017, arXiv:1706.06783. [Google Scholar]
- Wang, T.; He, X.S.; Zhou, M.Y.; Fu, Z.Q. Link prediction in evolving networks based on popularity of nodes. Sci. Rep. 2017, 7, 7147. [Google Scholar] [CrossRef]
- Lei, K.; Qin, M.; Bai, B.; Zhang, G. Adaptive multiple non-negative matrix factorization for temporal link prediction in dynamic networks. In Proceedings of the 2018 Workshop on Network Meets AI & ML, Budapest, Hungary, 24 August 2018; pp. 28–34. [Google Scholar]
- Ma, X.; Sun, P.; Wang, Y. Graph regularized nonnegative matrix factorization for temporal link prediction in dynamic networks. Phys. A Stat. Mech. Its Appl. 2018, 496, 121–136. [Google Scholar] [CrossRef]
- Fang, C.; Kohram, M.; Ralescu, A.L. Spectral regression with low-rank approximation for dynamic graph link prediction. IEEE Intell. Syst. 2011, 26, 48. [Google Scholar] [CrossRef]
- Wu, T.; Chang, C.S.; Liao, W. Tracking network evolution and their applications in structural network analysis. IEEE Trans. Netw. Sci. Eng. 2018, 6, 562–575. [Google Scholar] [CrossRef]
- Liu, F.; Liu, B.; Sun, C.; Liu, M.; Wang, X. Deep learning approaches for link prediction in social network services. In Proceedings of the Neural Information Processing: 20th International Conference, ICONIP 2013, Daegu, Republic of Korea, 3–7 November 2013; Springer: Berlin/Heidelberg, Germany, 2013; pp. 425–432, Part II 20. [Google Scholar]
- Chen, J.; Wang, X.; Xu, X. GC-LSTM: Graph convolution embedded LSTM for dynamic network link prediction. Appl. Intell. 2022, 52, 7513–7528. [Google Scholar] [CrossRef]
- Yang, C.; Liu, Z.; Zhao, D.; Sun, M.; Chang, E.Y. Network representation learning with rich text information. In Proceedings of the IJCAI, Buenos Aires, Argentina, 25–31 July 2015; Volume 2015, pp. 2111–2117. [Google Scholar]
- Cai, H.; Zheng, V.W.; Chang, K.C.C. A comprehensive survey of graph embedding: Problems, techniques, and applications. IEEE Trans. Knowl. Data Eng. 2018, 30, 1616–1637. [Google Scholar] [CrossRef]
- Taheri, A.; Berger-Wolf, T. Predictive temporal embedding of dynamic graphs. In Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, Vancouver, BC, Canada, 27–30 August 2019; pp. 57–64. [Google Scholar]
- Goyal, P.; Chhetri, S.R.; Canedo, A. dyngraph2vec: Capturing network dynamics using dynamic graph representation learning. Knowl.-Based Syst. 2020, 187, 104816. [Google Scholar] [CrossRef]
- Ibrahim, N.M.A.; Chen, L. Link prediction in dynamic social networks by integrating different types of information. Appl. Intell. 2015, 42, 738–750. [Google Scholar] [CrossRef]
- Chiu, C.; Zhan, J. Deep learning for link prediction in dynamic networks using weak estimators. IEEE Access 2018, 6, 35937–35945. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, S.; Li, Y.; Li, H. TLP-CCC: Temporal link prediction based on collective community and centrality feature fusion. Entropy 2022, 24, 296. [Google Scholar] [CrossRef]
- Kumar, M.; Mishra, S.; Singh, S.S.; Biswas, B. Community Enhanced Link Prediction in Dynamic Networks. ACM Trans. Web 2023. [Google Scholar] [CrossRef]
- Choudhury, N.; Uddin, S. Evolutionary community mining for link prediction in dynamic networks. In Proceedings of the Complex Networks & Their Applications VI: Proceedings of Complex Networks 2017 (The Sixth International Conference on Complex Networks and Their Applications), Lyon, France, 29 November–1 December 2017; Springer: Cham, Switzerland, 2018; pp. 127–138. [Google Scholar]
- Papadopoulos, S.; Kompatsiaris, Y.; Vakali, A.; Spyridonos, P. Community detection in social media: Performance and application considerations. Data Min. Knowl. Discov. 2012, 24, 515–554. [Google Scholar] [CrossRef]
- Fortunato, S. Community detection in graphs. Phys. Rep. 2010, 486, 75–174. [Google Scholar] [CrossRef]
- Uddin, S.; Khan, A.; Piraveenan, M. A set of measures to quantify the dynamicity of longitudinal social networks. Complexity 2016, 21, 309–320. [Google Scholar] [CrossRef]
- Choudhury, N.; Uddin, S. Evolutionary Features for Dynamic Link Prediction in Social Networks. Appl. Sci. 2023, 13, 2913. [Google Scholar] [CrossRef]
- Sorensen, T.A. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons. Biol. Skar. 1948, 5, 1–34. [Google Scholar]
- De Gooijer, J.G.; Hyndman, R.J. 25 years of time series forecasting. Int. J. Forecast. 2006, 22, 443–473. [Google Scholar] [CrossRef]
- Hyndman, R.J.; Athanasopoulos, G. Forecasting: Principles and Practice; OTexts: Melbourne, Australia, 2018. [Google Scholar]
- Salvador, S.; Chan, P. Toward accurate dynamic time warping in linear time and space. Intell. Data Anal. 2007, 11, 561–580. [Google Scholar] [CrossRef]
- Chi, K.T.; Liu, J.; Lau, F.C. A network perspective of the stock market. J. Empir. Financ. 2010, 17, 659–667. [Google Scholar]
- Rosvall, M.; Bergstrom, C.T. Maps of random walks on complex networks reveal community structure. Proc. Natl. Acad. Sci. USA 2008, 105, 1118–1123. [Google Scholar] [CrossRef]
- Valverde-Rebaza, J.C.; de Andrade Lopes, A. Link prediction in complex networks based on cluster information. In Proceedings of the Advances in Artificial Intelligence-SBIA 2012: 21th Brazilian Symposium on Artificial Intelligence, Curitiba, Brazil, 20–25 October 2012; Springer: Berlin/Heidelberg, Germany, 2012; pp. 92–101. [Google Scholar]
- Raghavan, U.N.; Albert, R.; Kumara, S. Near linear time algorithm to detect community structures in large-scale networks. Phys. Rev. E 2007, 76, 036106. [Google Scholar] [CrossRef]
- Blondel, V.D.; Guillaume, J.L.; Lambiotte, R.; Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008, 2008, P10008. [Google Scholar] [CrossRef]
- Newman, M.E. Fast algorithm for detecting community structure in networks. Phys. Rev. E 2004, 69, 066133. [Google Scholar] [CrossRef]
- Uddin, S.; Choudhury, N.; Farhad, S.M.; Rahman, M.T. The optimal window size for analysing longitudinal networks. Sci. Rep. 2017, 7, 13389. [Google Scholar] [CrossRef]
- Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I.H. The WEKA data mining software: An update. ACM SIGKDD Explor. Newsl. 2009, 11, 10–18. [Google Scholar] [CrossRef]
- Cessie, S.l.; Houwelingen, J.V. Ridge estimators in logistic regression. J. R. Stat. Soc. Ser. C Appl. Stat. 1992, 41, 191–201. [Google Scholar] [CrossRef]
- Yang, Y.; Lichtenwalter, R.N.; Chawla, N.V. Evaluating link prediction methods. Knowl. Inf. Syst. 2015, 45, 751–782. [Google Scholar] [CrossRef]
- Zhou, T.; Lü, L.; Zhang, Y.C. Predicting missing links via local information. Eur. Phys. J. B 2009, 71, 623–630. [Google Scholar] [CrossRef]
- Rossetti, G.; Guidotti, R.; Miliou, I.; Pedreschi, D.; Giannotti, F. A supervised approach for intra-/inter-community interaction prediction in dynamic social networks. Soc. Netw. Anal. Min. 2016, 6, 86. [Google Scholar] [CrossRef]
- Valverde-Rebaza, J.; de Andrade Lopes, A. Exploiting behaviors of communities of twitter users for link prediction. Soc. Netw. Anal. Min. 2013, 3, 1063–1074. [Google Scholar] [CrossRef]
- Feng, X.; Zhao, J.; Xu, K. Link prediction in complex networks: A clustering perspective. Eur. Phys. J. B 2012, 85, 3. [Google Scholar] [CrossRef]
Dataset | Actors | Links | Training Duration dd/mm/yy | Test Duration dd/mm/yy | Window Size | # SINs | ||
---|---|---|---|---|---|---|---|---|
Start | End | Start | End | |||||
96 | 1,086,404 | 14/09/04 | 31/01/05 | 01/02/05 | 05/05/05 | Monthly | 5 | |
167 | 82,927 | 02/01/10 | 31/07/10 | 01/08/10 | 30/09/10 | Monthly | 8 | |
1899 | 61,734 | 24/03/04 | 31/05/04 | 01/06/04 | 26/10/04 | Daily | 45 | |
11,715 | 42,698 | 01/01/07 | 31/03/07 | 01/04/07 | 30/04/07 | Daily | 90 | |
6798 | 290,597 | 01/10/93 | 31/12/98 | 01/01/99 | 10/12/99 | Yearly | 6 |
Random Forest | |||||||||
---|---|---|---|---|---|---|---|---|---|
Dataset | Accuracy | AUCROC | AUCPR | ||||||
79.19 | 77.92 | 67.99 | 0.706 | 0.678 | 0.552 | 0.33 | 0.33 | 0.23 | |
88.13 | 81.51 | 75.56 | 0.550 | 0.655 | 0.511 | 0.62 | 0.61 | 0.58 | |
72.60 | 66.85 | 70.13 | 0.571 | 0.645 | 0.541 | 0.33 | 0.39 | 0.29 | |
84.64 | 83.59 | 84.63 | 0.734 | 0.569 | 0.501 | 0.26 | 0.20 | 0.18 | |
91.46 | 90.72 | 90.67 | 0.885 | 0.617 | 0.603 | 0.51 | 0.27 | 0.29 | |
Bagging | |||||||||
75.32 | 72.86 | 77.26 | 0.617 | 0.608 | 0.576 | 0.24 | 0.26 | 0.22 | |
77.15 | 81.23 | 75.61 | 0.541 | 0.655 | 0.509 | 0.61 | 0.66 | 0.56 | |
69.52 | 56.00 | 61.94 | 0.590 | 0.583 | 0.487 | 0.40 | 0.37 | 0.25 | |
82.90 | 82.59 | 84.47 | 0.579 | 0.484 | 0.498 | 0.24 | 0.16 | 0.18 | |
93.24 | 90.82 | 90.63 | 0.876 | 0.587 | 0.557 | 0.60 | 0.30 | 0.28 | |
Logistic Regression | |||||||||
78.23 | 78.55 | 78.12 | 0.663 | 0.721 | 0.577 | 0.31 | 0.40 | 0.20 | |
77.00 | 75.82 | 75.54 | 0.549 | 0.655 | 0.516 | 0.62 | 0.67 | 0.58 | |
70.58 | 72.21 | 71.12 | 0.529 | 0.621 | 0.527 | 0.40 | 0.42 | 0.34 | |
84.52 | 84.59 | 84.64 | 0.620 | 0.503 | 0.562 | 0.23 | 0.19 | 0.20 | |
91.11 | 90.48 | 90.52 | 0.852 | 0.618 | 0.601 | 0.39 | 0.25 | 0.26 |
Accuracy | 54.00 | 24.15 | 17.24 |
AUCROC | 1.82 | 1.15 | 0.073 |
AUCPR | 1.51 | 0.90 | 0.060 |
Feature Name | Information Gain | Chi-Square Evaluation | SVM Evaluator | Random Forest Evaluator | Total |
---|---|---|---|---|---|
2 | 2 | 3 | 4 | 11 | |
1 | 1 | 1 | 1 | 4 | |
4 | 4 | 4 | 2 | 14 | |
3 | 3 | 2 | 3 | 11 | |
1 | 1 | 1 | 1 | 4 | |
4 | 4 | 4 | 4 | 16 | |
2 | 2 | 3 | 3 | 10 | |
3 | 3 | 2 | 2 | 10 | |
2 | 2 | 4 | 4 | 12 | |
1 | 1 | 2 | 3 | 7 | |
4 | 4 | 3 | 2 | 13 | |
3 | 3 | 1 | 1 | 8 | |
1 | 1 | 3 | 1 | 6 | |
4 | 4 | 4 | 4 | 16 | |
3 | 3 | 2 | 3 | 11 | |
2 | 2 | 1 | 2 | 7 | |
1 | 1 | 4 | 1 | 7 | |
2 | 2 | 3 | 2 | 9 | |
4 | 3 | 2 | 4 | 13 | |
3 | 4 | 1 | 3 | 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choudhury, N. Community-Aware Evolution Similarity for Link Prediction in Dynamic Social Networks. Mathematics 2024, 12, 285. https://doi.org/10.3390/math12020285
Choudhury N. Community-Aware Evolution Similarity for Link Prediction in Dynamic Social Networks. Mathematics. 2024; 12(2):285. https://doi.org/10.3390/math12020285
Chicago/Turabian StyleChoudhury, Nazim. 2024. "Community-Aware Evolution Similarity for Link Prediction in Dynamic Social Networks" Mathematics 12, no. 2: 285. https://doi.org/10.3390/math12020285
APA StyleChoudhury, N. (2024). Community-Aware Evolution Similarity for Link Prediction in Dynamic Social Networks. Mathematics, 12(2), 285. https://doi.org/10.3390/math12020285