Next Article in Journal
Volterra Black-Box Models Identification Methods: Direct Collocation vs. Least Squares
Next Article in Special Issue
Statistical Solitonic Impact on Submanifolds of Kenmotsu Statistical Manifolds
Previous Article in Journal
BSC-Based Digital Transformation Strategy Selection and Sensitivity Analysis
Previous Article in Special Issue
Killing and 2-Killing Vector Fields on Doubly Warped Products
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Lifts of a Semi-Symmetric Metric Connection from Sasakian Statistical Manifolds to Tangent Bundle

1
Department of Mathematics, Pachhunga University College, Mizoram University, Aizawl 796004, India
2
Basic Science Department, Modern Academy for Engineering and Technology, Maadi 4410242, Egypt
3
Department of Mathematics, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
4
Department of Mathematics and Computer Science, Mizoram University, Aizawl 796004, India
5
Department of Pure Mathematics, University of Calcutta, 35, Ballygaunge Circular Road, Kolkata 700019, India
*
Author to whom correspondence should be addressed.
Mathematics 2024, 12(2), 226; https://doi.org/10.3390/math12020226
Submission received: 4 December 2023 / Revised: 29 December 2023 / Accepted: 8 January 2024 / Published: 10 January 2024
(This article belongs to the Special Issue Differentiable Manifolds and Geometric Structures)

Abstract

:
The lifts of Sasakian statistical manifolds associated with a semi-symmetric metric connection in the tangent bundle are characterized in the current research. The relationship between the complete lifts of a statistical manifold with semi-symmetric metric connections and Sasakian statistical manifolds with a semi-symmetric metric connection in the tangent bundle is investigated. We also discuss the classification of Sasakian statistical manifolds with respect to semi-symmetric metric connections in the tangent bundle. Finally, we derive an example of the lifts of Sasakian statistical manifolds to the tangent bundle.

1. Introduction

Friedmann and Schouten [1] proposed the concept of a semi-symmetric connection (SSC) on a differentiable manifold. If a linear connection satisfies the expression:
T ¨ ( X 0 , Y 0 ) = ω 0 ( Y 0 ) X 0 ω 0 ( X 0 ) Y 0 ,
and is not torsion-free, it is referred to as a semi-symmetric connection (SSC), where T ¨ is the torsion tensor, ω 0 is a one-form, and X 0 , Y 0 are vector fields. Hayden [2] introduced the notion of the metric connection, which was called the Hayden connection. The semi-symmetric metric connection (SSMC) satisfies the semi-symmetric condition and is known to exist if ¨ g 0 = 0 ; otherwise, it is a semi-symmetric non-metric connection (SSNMC), and it was further studied in [2,3]. Amari [4] was the first to study statistical inference problems in information geometry, which was the concept of statistical structure. Every point on a statistical manifold, a differentiable manifold, depicts a probability distribution. A statistical manifold with infinite dimensions can be found in the collection of all probability measurements. Furuhata et al. investigated the concepts of the Sasakian and Kenmotsu statistical structures [5,6,7]. Kurose [8] studied the concept of the holomorphic statistical structure as a generalization of Kahler’s structure. Kazan and Kazan [9] investigated the SSMC on Sasakian statistical manifolds. In [10,11], the authors investigated connections on statistical manifolds. Numerous geometers have explored the tangent bundle of differential geometry, including Yano and Kobayashi [12], Yano and Ishihara [13], Tani [14], and Pandey and Chaturvedi [15]. Yano and Ishihara [13] established the lifts of the manifold, as well as the connection in the tangent bundle. Different manifolds associated with different connections in the tangent bundle were studied in [16,17,18,19,20,21,22,23,24]. Kumar et al. [25] recently studied the lifts of the semi-symmetric non-metric connection (SSNMC) from statistical manifolds to the tangent bundle.
This Introduction is followed by a section on the preliminary materials. Section 3 investigates the statistical manifold and Sasakian statistical manifolds’ lifts to its tangent bundle, and Section 4 computes the SSMC in the tangent bundle, whereas Section 5 is concerned with the investigation of the lifts of the curvature tensor of a statistical manifold with the SSMC in the tangent bundle. Section 6 investigates the lifts of some curvature tensors of Sasakian statistical manifolds with the SSMC in the tangent bundle and proves some theorems. Finally, in Section 7, an example is provided to demonstrate the lifts of Sasakian statistical manifolds in the tangent bundle.

2. Preliminaries

In a differentiable manifold M, let T 0 M = p M T 0 p M be the tangent bundle, where T 0 p M is the tangent space at point p M and π : T 0 M M is the natural bundle structure of T 0 M over M. For any coordinate system ( Q , x h ) in M, where ( x h ) is a local coordinate system in the neighborhood Q, ( π 1 ( Q ) , x h , y h ) is the coordinate system in T 0 M , where ( x h , y h ) is an induced coordinate system in π 1 ( Q ) from ( x h ) [13].

2.1. Vertical and Complete Lifts

Let us define a vector field X 0 , a tensor field F 0 of type ( 1 , 1 ) , a function f 0 , a one-form ω 0 , and affine connection ¨ in M; its vertical and complete lifts are given by f 0 v , X 0 v , ω 0 v , F 0 v , ¨ v and f 0 c , X 0 c , ω 0 c , F 0 c , ¨ c , respectively. The following formulas for complete and vertical lifts were defined by [13]:
( f 0 X 0 ) v = f 0 v X 0 v , ( f 0 X 0 ) c = f 0 c X 0 v + f 0 v X 0 c ,
X 0 v f 0 v = 0 , X 0 v f 0 c = X 0 c f 0 v = ( X 0 f 0 ) v , X 0 c f 0 c = ( X 0 f 0 ) c ,
ω 0 ( f 0 v ) = 0 , ω 0 v ( X 0 c ) = ω 0 c ( X 0 v ) = ω 0 ( X 0 ) v , ω 0 c ( X 0 c ) = ω 0 ( X 0 ) c ,
F 0 v X 0 c = ( F 0 X 0 ) v , F 0 c X 0 c = ( F 0 X 0 ) c ,
[ X 0 , Y 0 ] v = [ X 0 c , Y 0 v ] = [ X 0 v , Y 0 c ] , [ X 0 , Y 0 ] c = [ X 0 c , Y 0 c ] ,
¨ c X 0 c Y 0 c = ( ¨ X 0 Y 0 ) c , ¨ c X 0 c Y 0 v = ( ¨ X 0 Y 0 ) v .

2.2. Statistical Manifold

In an n-dimensional Riemannian manifold ( M , g 0 ) with Riemannian metric g 0 , we consider ¨ as an affine connection and ˜ as its Levi-Civita connection. The structure ( M , ¨ , g 0 ) is known as a statistical manifold if ¨ satisfy an affine and torsion-free connection and ¨ g 0 satisfies the Codazzi equation:
( ¨ X 0 g 0 ) ( Y 0 , Z 0 ) = ( ¨ Y 0 g 0 ) ( X 0 , Z 0 ) ,
for all X 0 , Y 0 , Z 0 χ 0 ( M ) , where χ 0 ( M ) is the set of all tangent vector fields on M. We know that there exists an affine connection ¨ , which is the dual of ¨ with respect to g 0 such that
X 0 g 0 ( Y 0 , Z 0 ) = g 0 ( ¨ X 0 , Z 0 ) + g 0 ( Y 0 , ¨ X 0 Z 0 ) .
Also, the pair of connections ¨ and ¨ satisfies ( ¨ ) = ¨ ; one can obtain
˜ = 1 2 ( ¨ + ¨ ) .
The tensor field K 0 of type ( 1 , 2 ) on ( M , ¨ , g 0 ) is defined by
K 0 ( X 0 , Y 0 ) = ¨ X 0 Y 0 ˜ X 0 Y 0 , K 0 ( X 0 , Y 0 ) = 1 2 ¨ X 0 Y 0 ¨ X 0 Y 0 ,
and K 0 is symmetric, which gives
g 0 ( K 0 ( X 0 , Y 0 ) , Z 0 ) = g 0 ( K 0 ( X 0 , Z 0 ) , Y 0 ) , K 0 ( X 0 , Y 0 ) = K 0 ( Y 0 , X 0 ) .
The statistical curvature tensor field associated with ¨ is defined as
R ¨ ( X 0 , Y 0 ) Z 0 = ¨ X 0 ¨ Y 0 Z 0 ¨ Y 0 ¨ X 0 Z 0 ¨ [ X 0 , Y 0 ] Z 0 .
By replacing ¨ with ¨ , we can obtain the statistical curvature tensor field R ¨ . The curvature tensor fields R ¨ and R ¨ satisfy
R ¨ ( X 0 , Y 0 ) Z 0 = R ¨ ( Y 0 , X 0 ) Z 0 , R ¨ ( X 0 , Y 0 ) Z 0 = R ¨ ( Y 0 , X 0 ) Z 0 ,
g 0 ( R ¨ ( X 0 , Y 0 ) Z 0 , W 0 ) = g 0 ( R ¨ ( X 0 , Y 0 ) W 0 , Z 0 ) ,
R ¨ ( X 0 , Y 0 ) Z 0 + R ¨ ( Y 0 , Z 0 ) X 0 + R ¨ ( Z 0 , X 0 ) Y 0 = 0 .

2.3. Sasakian Statistical Manifolds

Let M be a ( 2 n + 1 ) -dimensional differentiable manifold, and it is known to admit an almost contact Riemannian structure ( Φ 0 , ω 0 , A , g 0 ) , where Φ 0 is a ( 1 , 1 ) tensor field, A is a vector field, ω 0 is a one-form, and g 0 is a Riemannian metric on M such that
Φ 0 A = 0 , ω 0 ( A ) = 1 , g ( A , X 0 ) = ω 0 ( X 0 ) ,
Φ 0 2 X 0 = X 0 + ω 0 ( X 0 ) A ,
g 0 ( Φ 0 X 0 , Φ 0 Y 0 ) = g 0 ( X 0 , Y 0 ) ω 0 ( X 0 ) ω 0 ( Y 0 ) ,
for all vector fields X 0 , Y 0 on M. Also, if ( Φ 0 , ω 0 , A , g 0 ) satisfy
d ω 0 = 0 , ˜ X 0 A = Φ 0 X 0 ,
( ˜ X 0 Φ 0 ) Y 0 = ω 0 ( Y 0 ) X 0 g 0 ( X 0 , Y 0 ) A ,
then M is called a Sasakian manifold [6,26].
A quadruple ( ¨ , g 0 , Φ 0 , A ) is known as a Sasakian statistical structure on M, if ( ¨ , g 0 ) is a statistical structure and ( g 0 , Φ 0 , A ) is a Sasakian structure on M and the formula:
K 0 ( X 0 , Φ 0 Y 0 ) + Φ 0 K 0 ( X 0 , Y 0 ) = 0 ,
holds for any vector fields X 0 and Y 0 on M [6]. In a statistical structure ( ¨ , g 0 ) and an almost-contact metric structure ( g 0 , Φ 0 , A ) on M, the structure ( ¨ , g 0 , Φ 0 , A ) is known as a Sasakian statistical structure if and only if it satisfies the following formulas [9,27]:
¨ X 0 Φ 0 Y 0 Φ 0 ¨ X 0 Y 0 = g 0 ( Y 0 , A ) X 0 g 0 ( Y 0 , X 0 ) A ,
¨ X 0 A = Φ 0 X 0 + g 0 ( ¨ X 0 A , A ) A .

3. Statistical Manifold and Sasakian Statistical Manifolds in the Tangent Bundle

In this section, we obtain the complete lifts of the statistical manifolds and Sasakian statistical manifolds to the tangent bundle.
Suppose T 0 M is the tangent bundle and X 0 = X 0 i x i is a local vector field on M; then, its vertical and complete lifts in terms of partial differential equations are:
X 0 v = X 0 i y i ,
X 0 c = X 0 i x i + X 0 i x j y j y i .
Let the tangent bundle be denoted by T 0 M . Then, obtaining the complete lifts on Equations (7)–(15) by mathematical operators, we obtain
( ¨ X 0 c c g 0 c ) ( Y 0 c , Z 0 c ) = ( ¨ Y 0 c c g 0 c ) ( X 0 c , Z 0 c ) ,
X 0 c g 0 c ( Y 0 c , Z 0 c ) = g 0 c ( ¨ X 0 c c Y 0 c , Z 0 c ) + g 0 c ( Y 0 c , ¨ X 0 c c Z 0 c ) ,
˜ c = 1 2 ( ¨ c + c ) ,
K 0 c ( X 0 c , Y 0 c ) = ¨ X 0 c c Y 0 c ˜ X 0 c c Y 0 c ,
K 0 c ( X 0 c , Y 0 c ) = 1 2 ( ¨ X 0 c c Y 0 c ¨ X 0 c c Y 0 c ) ,
g 0 c ( K 0 c ( X 0 c , Y 0 c ) , Z 0 c ) = g 0 c ( K 0 c ( X 0 c , Z 0 c ) , Y 0 c ) , K 0 c ( X 0 c , Y 0 c ) = K 0 c ( Y 0 c , X 0 c ) ,
R ¨ c ( X 0 c , Y 0 c ) Z 0 c = ¨ X 0 c c ¨ Y 0 c c Z 0 c ¨ Y 0 c c ¨ X 0 c c Z 0 c ¨ [ X 0 c , Y 0 c ] c ,
R ¨ c ( X 0 c , Y 0 c ) Z 0 c = R ¨ c ( Y 0 c , X 0 c ) Z 0 c , R ¨ c ( X 0 c , Y 0 c ) Z 0 c = R ¨ c ( Y 0 c , X 0 c ) Z 0 c ,
g 0 c ( R ¨ c ( X 0 c , Y 0 c ) Z 0 c , W 0 c ) = g 0 c ( R ¨ c ( X 0 c , Y 0 c ) W 0 c , Z 0 c ) ,
R ¨ c ( X 0 c , Y 0 c ) Z 0 c + R ¨ c ( Y 0 c , Z 0 c ) X 0 c + R ¨ c ( Z 0 c , X 0 c ) Y 0 c = 0 .
Similarly, obtaining complete lifts on Equations (16)–(23) by mathematical operators, we obtain
( Φ 0 A ) c = 0 , ω 0 c ( A c ) = 1 , g 0 c ( A c , X 0 c ) = ω 0 c ( X 0 c ) ,
( Φ 0 2 X 0 ) c = X 0 c + ω 0 c ( X 0 c ) A v + ω 0 ( X 0 c ) A c ,
g 0 c ( Φ 0 X 0 ) c , ( Φ 0 Y 0 ) c = g 0 c ( X 0 c , Y 0 c ) ω 0 c ( X 0 c ) ω 0 v ( Y 0 c ) ω 0 v ( X 0 c ) ω 0 c ( Y 0 c ) ,
d ω 0 c = 0 , ˜ X 0 c c A c = ( Φ 0 X 0 ) c ,
( ˜ X 0 c c Φ 0 c ) Y 0 c = ω 0 c ( Y 0 c ) X 0 v + ω 0 v ( Y 0 c ) X 0 c g 0 c ( X 0 c , Y 0 c ) A v g 0 v ( X 0 c , Y 0 c ) A c ,
K 0 c X 0 c , ( Φ 0 Y 0 ) c + Φ 0 c K 0 c ( X 0 c , Y 0 c ) = 0 ,
¨ X 0 c c Φ 0 c Y 0 c Φ 0 c ¨ X 0 c c Y 0 c = g 0 c ( Y 0 c , A c ) X 0 v + g 0 c ( Y 0 v , A c ) X 0 c g 0 c ( Y 0 c , X 0 c ) A v g 0 c ( Y 0 v , X 0 c ) A c ,
¨ X 0 c c A c = Φ 0 c X 0 c + g 0 c ( A c , ¨ X 0 c c A c ) A v + g 0 c ( A v , ¨ X 0 c c A c ) A c .

4. Semi-Symmetric Metric Connection in the Tangent Bundle

Let M be an n-dimensional Riemannian manifold; the linear connection ˘ on M is given by [3]
˘ X 0 Y 0 = ˜ X 0 Y 0 + ω 0 ( Y 0 ) X 0 g 0 ( X 0 , Y 0 ) A K 0 ( X 0 , Y 0 ) ,
for all vector fields X 0 and Y 0 χ ( M n ) , and ω 0 is a one-form associated with vector field A and defined by
ω 0 ( X 0 ) = g 0 ( X 0 , A ) .
By using (10) in (44), we obtain
˘ X 0 Y 0 = ˜ X 0 Y 0 + ω 0 ( Y 0 ) X 0 g 0 ( X 0 , Y 0 ) A + K 0 ( X 0 , Y 0 ) ,
The torsion tensor is given by
T ˘ ( X 0 , Y 0 ) = ω 0 ( Y 0 ) X 0 ω 0 ( X 0 ) Y 0 .
A linear connection satisfying (47) is called a semi-symmetric connection (SSC). For any vector fields X 0 , Y 0 , Z 0 on M, we have
( ˘ X 0 g 0 ) ( Y 0 , Z 0 ) = X 0 g 0 ( Y 0 , Z 0 ) g 0 ( ˘ X 0 Y 0 , Z 0 ) g 0 ( Y 0 , ˘ X 0 Z 0 ) .
Using (8), (11), and (44), we obtain
( ˘ X 0 g 0 ) ( Y 0 , Z 0 ) = 0 .
Hence, a linear connection ˘ defined by (44) satisfies (47) and (49) and is called an SSMC.
Let the tangent bundle be denoted by T 0 M , and we obtain the complete lifts of Equations (44)–(49) by mathematical operators; we obtain
˘ X 0 c c Y 0 c = ˜ X 0 c c Y 0 c + ω 0 c ( Y 0 c ) X 0 v + ω 0 v ( Y 0 c ) X 0 c g 0 c ( X 0 c , Y 0 c ) A v g 0 c ( X 0 v , Y 0 c ) A c K 0 c ( X 0 c , Y 0 c ) ,
ω 0 c ( X 0 c ) = g 0 c ( X 0 c , A c ) ,
˘ X 0 c c Y 0 c = ˜ X 0 c c Y 0 c + ω 0 c ( Y 0 c ) X 0 v + ω 0 v ( Y 0 c ) X 0 c g 0 c ( X 0 c , Y 0 c ) A v g 0 c ( X 0 v , Y 0 c ) A c + K 0 c ( X 0 c , Y 0 c ) ,
T ˘ c ( X 0 c , Y 0 c ) = ω 0 c ( Y 0 c ) X 0 v + ω 0 v ( Y 0 c ) X 0 c ω 0 c ( X 0 c ) Y 0 v ω 0 v ( X 0 c ) Y 0 c ,
( ˘ X 0 c c g c ) ( Y 0 c , Z 0 c ) = X 0 c g c ( Y 0 v , Z 0 c ) + X 0 v g c ( Y 0 c , Z 0 c ) g c ( ˘ X 0 c c Y 0 c , Z 0 c ) g c ( Y 0 c , ˘ X 0 c c Z 0 c ) ,
( ˘ X 0 c c g 0 c ) ( Y 0 c , Z 0 c ) = 0 .
Theorem 1.
Let M be a Sasakian statistical manifold admitting an SSMC in the tangent bundle T 0 M , which satisfies (53) and (55), then the SSMC of the Sasakian statistical manifold in the tangent bundle is given by (50) and satisfies (52).
Proof. 
Let ( ˘ c be a metric connection in the tangent bundle satisfying (53) on a Sasakian statistical manifold M defined by
˘ X 0 c c Y 0 c = ¨ X 0 c c Y 0 c + H c ( X 0 c , Y 0 c ) ,
where ¨ c is a torsion-free connection and H c is the tensor field of type ( 1 , 2 ) in the tangent bundle. Using (27) and (56), we obtain
0 = ( ˘ X 0 c c g c ) ( Y 0 c , Z 0 c ) = X 0 c g c ( Y 0 c , Z 0 c ) g c ( ˘ X 0 c c Y 0 c , Z 0 c ) g c ( Y 0 c , ˘ X 0 c c Z 0 c ) = X 0 c g c ( Y 0 c , Z 0 c ) g c ˘ X 0 c c Y 0 c + H c ( X 0 c , Y 0 c ) , Z 0 c g c Y 0 c , ˘ X 0 c c Z 0 c + H c ( X 0 c , Z 0 c ) = 2 g c K 0 c ( X 0 c , Z 0 c ) , Y 0 c g c H c ( X 0 c , Y 0 c ) , Z 0 c g c H c ( X c , Z c ) , Y 0 c .
So,
g c H c ( X c , Y c ) , Z c + g c H c ( X 0 c , Z 0 c ) , Y 0 c = 2 g c K 0 c ( X 0 c , Z 0 c ) , Y 0 c .
Now, using (56), we obtain
T ˘ c ( X 0 c , Y 0 c ) = H c ( X 0 c , Y 0 c ) H c ( Y 0 c , X 0 c ) .
By using (53), we have
g c T ˘ c ( X 0 c , Y 0 c ) , Z 0 c + g c T ˘ c ( Z 0 c , X 0 c ) , Y 0 c + g c T ˘ c ( Z 0 c , Y 0 c ) , X 0 c = g c H c ( X 0 c , Y 0 c ) H c ( Y 0 c , X 0 c ) , Z 0 c + g c H c ( Z 0 c , X 0 c ) H c ( X 0 c , Z 0 c ) , Y 0 c + g c H c ( Z 0 c , Y 0 c ) H c ( Y 0 c , Z 0 c ) , X 0 c = 2 g c ( H c ( X 0 c , Y 0 c ) , Z 0 c ) + g c ( K 0 c ( X 0 c , Z 0 c ) , Y 0 c ) .
Using (53) in (60), we obtain
g c H c ( X 0 c , Y 0 c ) , Z 0 c = 1 2 [ g c ( ω c ( Y 0 c ) X 0 v + ω v ( Y 0 c ) X 0 c ω c ( X 0 c ) Y 0 v ω v ( X 0 c ) Y 0 c , Z 0 c ) + g c ( ω c ( X 0 c ) Z 0 v + ω v ( X 0 c ) Z 0 c ω c ( Z 0 c ) X 0 v ω v ( Z 0 c ) X 0 c , Y 0 c ) + g c ( ω c ( Y 0 c ) Z 0 v + ω v ( Y 0 c ) Z 0 c ω c ( Z 0 c ) Y 0 v ω v ( Z 0 c ) Y 0 c , X 0 c ) ] g c K 0 c ( X 0 c , Z 0 c ) , Y 0 c .
Hence, we obtain
H c ( X 0 c , Y 0 c ) = ω c ( Y 0 c ) X 0 v + ω v ( Y 0 c ) X 0 c g c ( X 0 c , Y 0 c ) A v g c ( X 0 v , Y 0 c ) A c K 0 c ( X 0 c , Y 0 c ) .
Further, by using Equations (29), (30), and (50), we obtain (52). □

5. Curvature Tensor of Semi-Symmetric Metric Connection on Statistical Manifolds in the Tangent Bundle

In an n-dimensional Riemannian manifold M and the statistical structure ( ¨ c , g 0 c ) on M in the tangent bundle T 0 M , we have the relation between the complete lifts of the SSMC ˘ c and torsion-free connection ¨ c in the tangent bundle from (29) and (50) by
˘ X 0 c c Y 0 c = ¨ X 0 c c Y 0 c + ω 0 c ( Y 0 c ) X 0 v + ω 0 v ( Y 0 c ) X 0 c g 0 c ( X 0 c , Y 0 c ) A v g 0 c ( X 0 v , Y 0 c ) A c K 0 c ( X 0 c , Y 0 c ) .
The complete lifts of the Riemannian curvature tensor R ˘ c of M associated with the SSMC ˘ c in the tangent bundle are given by
R ˘ c ( X 0 c , Y 0 c ) Z 0 c = ˘ X 0 c c ˘ Y 0 c c Z 0 c ˘ Y 0 c c ˘ X 0 c c Z 0 c ˘ [ X 0 c , Y 0 c ] c Z 0 c ,
Using Equation (63) in (64), we obtain
R ˘ c ( X 0 c , Y 0 c ) Z 0 c = R ¨ c ( X 0 c , Y 0 c ) Z 0 c + ( ω 0 c ( X 0 c ) A v + ω 0 v ( X 0 c ) A c ω 0 c ( A 0 c ) X 0 v ω 0 v ( A 0 c ) X 0 c ¨ X 0 c c A c + K 0 c ( X 0 c , A c ) ) g 0 c ( Y 0 c , Z 0 c ) ( ω 0 c ( Y 0 c ) A v + ω 0 v ( Y 0 c ) A c ω 0 c ( A 0 c ) Y 0 v ω 0 v ( A 0 c ) Y 0 c ¨ Y 0 c c A c + K 0 c ( Y 0 c , A c ) ) g 0 c ( X 0 c , Z 0 c ) g 0 c ( ω 0 c ( X 0 c ) A v + ω 0 v ( X 0 c ) A c ¨ X 0 c c A c + K 0 c ( X 0 c , A c ) , Z 0 c ) Y 0 c + g 0 c ( ω 0 c ( Y 0 c ) A v + ω 0 v ( Y 0 c ) A c ¨ Y 0 c c A c + K 0 c ( Y 0 c , A c ) , Z 0 c ) X 0 c ( ¨ X 0 c c K 0 c ) ( Y 0 c , Z 0 c ) + ( ¨ Y 0 c c K 0 c ) ( X 0 c , Z 0 c ) + K 0 c X 0 c , K 0 c ( Y 0 c , Z 0 c ) K 0 c Y 0 c , K 0 c ( X 0 c , Z 0 c ) ,
where R ¨ c is the complete lifts of the curvature tensor of M associated with torsion-free connection ¨ c in the tangent bundle T 0 M and is defined as
R ¨ c ( X 0 c , Y 0 c ) Z 0 c = ¨ X 0 c c ¨ Y 0 c c Z 0 c ¨ Y 0 c c ¨ X 0 c c Z 0 c ¨ [ X 0 c , Y 0 c ] c Z 0 c ,
Similarly, we obtain the complete lifts of the relation between the SSMC ˘ c and dual connection ¨ c in the tangent bundle from Equations (30) and (63) as
˘ X 0 c c Y 0 c = ¨ X 0 c c Y 0 c + ω 0 c ( Y 0 c ) X 0 v + ω 0 v ( Y 0 c ) X 0 c g 0 c ( X 0 c , Y 0 c ) A v g 0 c ( X 0 v , Y 0 c ) A c + K 0 c ( X 0 c , Y 0 c ) .
The relation between the complete lifts of the Riemannian curvature tensor R ˘ c associated with the SSMC ˘ c and Riemannian curvature tensor R ˘ c associated with the dual connection ¨ c in the tangent bundle T 0 M is obtain by using Equation (67) in (64) by
R ˘ c ( X 0 c , Y 0 c ) Z 0 c = R ¨ c ( X 0 c , Y 0 c ) Z 0 c + ( ω 0 c ( X 0 c ) A v + ω 0 v ( X 0 c ) A c ω 0 c ( A 0 c ) X 0 v ω 0 v ( A 0 c ) X 0 c ¨ X 0 c c A c K 0 c ( X 0 c , A c ) ) g 0 c ( Y 0 c , Z 0 c ) ( ω 0 c ( Y 0 c ) A v + ω 0 v ( Y 0 c ) A c ω 0 c ( A 0 c ) Y 0 v ω 0 v ( A 0 c ) Y 0 c ¨ Y 0 c c A c K 0 c ( Y 0 c , A c ) ) g 0 c ( X 0 c , Z 0 c ) g 0 c ( ω 0 c ( X 0 c ) A v + ω 0 v ( X 0 c ) A c ¨ X 0 c c A c K 0 c ( X 0 c , A c ) , Z 0 c ) Y 0 c + g 0 c ( ω 0 c ( Y 0 c ) A v + ω 0 v ( Y 0 c ) A c ¨ Y 0 c c A c K 0 c ( Y 0 c , A c ) , Z 0 c ) X 0 c + ( ¨ X 0 c c K 0 c ) ( Y 0 c , Z 0 c ) ( ¨ Y 0 c c K 0 c ) ( X 0 c , Z 0 c ) + K 0 c X 0 c , K 0 c ( Y 0 c , Z 0 c ) K 0 c Y 0 c , K 0 c ( X 0 c , Z 0 c ) ,
where R ¨ c is the complete lifts of the Riemannian curvature tensor of M associated with the lift of the dual connection ¨ c in the tangent bundle T 0 M and is defined as
R ¨ c ( X 0 c , Y 0 c ) Z 0 c = ¨ X 0 c c ¨ Y 0 c c Z 0 c ¨ Y 0 c c ¨ X 0 c c Z 0 c ¨ [ X 0 c , Y 0 c ] c Z 0 c .
Theorem 2.
In a Riemannian manifold M, let the complete lifts of the statistical structure be ( ¨ c , g 0 c ) in the tangent bundle T 0 M . Then:
1.
The relation between the lifts of the Riemannian curvature tensor R ˘ c of SSMC ˘ c and the Riemannian curvature tensor R ¨ c of torsion-free connection ¨ c in the tangent bundle T 0 M is given by Equation (65).
2.
The relation between the lifts of the Riemannian curvature tensor R ˘ c of SSMC ˘ c and the Riemannian curvature tensor R ¨ c of dual connection ¨ c in the tangent bundle T 0 M is given by Equation (68).
Proposition 1.
For a statistical manifold in the tangent bundle, the following relations hold:
(i)
g 0 c ( ¨ X 0 c c A 0 c , W 0 c ) + g 0 c ( K 0 c ( X 0 c , A 0 c ) , W 0 c ) = g 0 c ( ¨ X 0 c c A 0 c , W 0 c ) + g 0 c ( K 0 c ( X 0 c , A 0 c ) , W 0 c ) .
(ii)
g 0 c ( ( ¨ Y 0 c c K 0 c ) ( X 0 c , Z 0 c ) , W 0 c ) g 0 c ( ( ¨ X 0 c c K 0 c ) ( Y 0 c , Z 0 c ) , W 0 c ) = g 0 c ( ( ¨ Y 0 c c K 0 c ) ( X 0 c , W 0 c ) , Z 0 c ) g 0 c ( ( ¨ X 0 c c K 0 c ) ( Y 0 c , W 0 c ) , Z 0 c ) .
(iii)
g 0 c ( K 0 c ( X 0 c , K 0 c ( Y 0 c , Z 0 c ) ) , W 0 c ) = g 0 c ( K 0 c ( Y 0 c , K 0 c ( X 0 c , W 0 c ) ) , Z 0 c ) .
Proof. 
Using (29) and (30), we obtain (i). For (ii), we use (31) and prove that
g 0 c ( K 0 c ( ¨ Y 0 c c X 0 c , Z 0 c ) , W 0 c ) g 0 c ( K 0 c ( ¨ X 0 c c Y 0 c , Z 0 c ) , W 0 c ) = g 0 c ( K 0 c ( [ Y 0 c , X 0 c ] , Z 0 c ) , W 0 c ) = g 0 c ( K 0 c ( [ Y 0 c , X 0 c ] , W 0 c ) , Z 0 c ) = g 0 c ( K 0 c ( ¨ Y 0 c c X 0 c , W 0 c ) , Z 0 c ) g 0 c ( K 0 c ( ¨ X 0 c c Y 0 c , W 0 c ) , Z 0 c ) .
Now, using (27) and (31), we obtain
g 0 c ( ( ¨ Y 0 c c K 0 c ) ( X 0 c , Z 0 c ) , W 0 c ) = g 0 c ( ¨ Y 0 c c K 0 c ( X 0 c , Z 0 c ) , W 0 c ) g 0 c ( K 0 c ( X 0 c , ¨ Y 0 c c Z 0 c ) , W 0 c ) g 0 c ( K 0 c ( ¨ Y 0 c c X 0 c , Z 0 c ) , W 0 c ) = Y 0 c g 0 c ( W 0 v , K 0 c ( X 0 c , Z 0 c ) ) + Y 0 v g 0 c ( W 0 c , K 0 c ( X 0 c , Z 0 c ) ) g 0 c ( K 0 c ( X 0 c , Z 0 c ) , ¨ Y 0 c c W 0 c ) g 0 c ( K 0 c ( X 0 c , W 0 c ) , ¨ Y 0 c c Z 0 c ) g 0 c ( K 0 c ( ¨ Y 0 c c X 0 c , Z 0 c ) , W 0 c ) = Y 0 c g 0 c ( W 0 v , K 0 c ( X 0 c , Z 0 c ) ) + Y 0 v g 0 c ( W 0 c , K 0 c ( X 0 c , Z 0 c ) ) g 0 c ( K 0 c ( X 0 c , ¨ Y 0 c c W 0 c ) , Z 0 c ) Y 0 c g 0 c ( Z 0 v , K 0 c ( X 0 c , W 0 c ) ) Y 0 v g 0 c ( Z 0 c , K 0 c ( X 0 c , W 0 c ) ) + g 0 c ( Z 0 c , ¨ c K 0 c ( X 0 c , W 0 c ) ) g c ( K 0 c ( ¨ Y 0 c c X 0 c , Z 0 c ) , W 0 c ) = g c ( Z 0 c , ¨ Y 0 c c K 0 c ( X 0 c , W 0 c ) ) g c ( K 0 c ( X 0 c , ¨ Y 0 c c W 0 c ) , Z 0 c ) g 0 c ( K 0 c ( ¨ Y 0 c c X 0 c , Z 0 c ) , W 0 c ) .
From (70) and (71), we obtain
g 0 c ( ( ¨ Y 0 c c K 0 c ) ( X 0 c , Z 0 c ) , W 0 c ) g 0 c ( ( ¨ X 0 c c K 0 c ) ( Y 0 c , Z 0 c ) , W 0 c ) = g 0 c ( Z 0 c , ¨ Y 0 c c K 0 c ( X 0 c , W 0 c ) ) g 0 c ( K 0 c ( X 0 c , ¨ Y 0 c c W 0 c ) , Z 0 c ) g 0 c ( K 0 c ( ¨ Y 0 c c X 0 c , W 0 c ) , Z 0 c ) g 0 c ( Z 0 c , ¨ X 0 c c K 0 c ( Y 0 c , W 0 c ) ) + g 0 c ( K 0 c ( Y 0 c , ¨ X 0 c c W 0 c ) , Z 0 c ) + g 0 c ( K 0 c ( ¨ X 0 c c Y 0 c , W 0 c ) , Z 0 c ) = g 0 c ( ( ¨ Y 0 c c K 0 c ) ( X 0 c , W 0 c ) , Z 0 c ) g 0 c ( ( ¨ X 0 c c K 0 c ) ( Y 0 c , W 0 c ) , Z 0 c ) .
For (iii), from the symmetry property of K ¨ c , we deduce
g 0 c ( K 0 c ( X 0 c , K 0 c ( Y 0 c , Z 0 c ) ) , W 0 c ) = g 0 c ( K 0 c ( X 0 c , W 0 c ) , K 0 c ( Y 0 c , Z 0 c ) ) = g 0 c ( K 0 c ( Y 0 c , K 0 c ( X 0 c , W 0 c ) ) , Z 0 c ) .

6. Curvature Tensor of Semi-Symmetric Metric Connection on Sasakian Statistical Manifolds in The Tangent Bundle

Let ( M , ¨ c , g 0 c , Φ 0 c , ω 0 c , A c ) be the complete lifts of ( 2 n + 1 ) -dimensional Sasakian statistical manifolds in the tangent bundle T 0 M . Then, the complete lifts of the curvature tensors R ˘ c associated with SSMC ˘ c in the tangent bundle are given by
R ˘ c ( X 0 c , Y 0 c ) Z 0 c = ˘ X 0 c c ˘ Y 0 c c Z 0 c ˘ Y 0 c c ˘ X 0 c c Z 0 c ˘ [ X 0 c , Y 0 c ] c Z 0 c .
Using Equations (36)–(43) and (63) in Equation (74), we can obtain the relation of the complete lifts of the curvature tensor R ˘ c of the SSMC ˘ c and the curvature tensor R ¨ c of the torsion-free connection ¨ c in the tangent bundle T 0 M as
R ˘ c ( X 0 c , Y 0 c ) Z 0 c = R ¨ c ( X 0 c , Y 0 c ) Z 0 c + ( Φ 0 2 X 0 ) c ( Φ 0 X 0 ) c g 0 c ( Y 0 c , Z 0 c ) ( Φ 0 2 Y 0 ) c ( Φ 0 Y 0 ) c g 0 c ( X 0 c , Z 0 c ) + g 0 c ( Φ 0 X 0 ) c , Z 0 c Y 0 v + g 0 c ( Φ 0 X 0 ) v , Z 0 c Y 0 c g 0 c ( Φ 0 Y 0 ) c , Z 0 c X 0 v g 0 c ( Φ 0 Y 0 ) v , Z 0 c X 0 c ω 0 c ( X 0 c ) ω 0 c ( Z 0 c ) Y 0 v ω 0 c ( X 0 c ) ω 0 v ( Z 0 c ) Y 0 c ω 0 v ( X 0 c ) ω 0 c ( Z 0 c ) Y 0 c + ω 0 c ( Y 0 c ) ω 0 c ( Z 0 c ) X 0 v + ω 0 c ( Y 0 c ) ω 0 v ( Z 0 c ) X 0 c + ω 0 v ( Y 0 c ) ω 0 c ( Z 0 c ) X 0 c ( ¨ X 0 c c K 0 c ) ( Y 0 c , Z 0 c ) + ( ¨ Y 0 c c K 0 c ) ( X 0 c , Z 0 c ) + K 0 c X 0 c , K 0 c ( Y 0 c , Z 0 c ) K 0 c Y 0 c , K 0 c ( X 0 c , Z 0 c ) .
Similarly, we obtain the relation of the complete lifts of the curvature tensor R ˘ c of the SSMC ˘ c and the curvature tensor R ¨ c of the dual connection ¨ c in the tangent bundle T 0 M by using Equations (36)–(43) and (67) in (74) as
R ˘ c ( X 0 c , Y 0 c ) Z 0 c = R ¨ c ( X 0 c , Y 0 c ) Z 0 c + ( Φ 0 2 X 0 ) c ( Φ 0 X 0 ) c g 0 c ( Y 0 c , Z 0 c ) ( Φ 0 2 Y 0 ) c ( Φ 0 Y 0 ) c g 0 c ( X 0 c , Z 0 c ) + g 0 c ( Φ 0 X 0 ) c , Z 0 c Y 0 v + g 0 c ( Φ 0 X 0 ) v , Z 0 c Y 0 c g 0 c ( Φ 0 Y 0 ) c , Z 0 c X 0 v g 0 c ( Φ 0 Y 0 ) v , Z 0 c X 0 c ω 0 c ( X 0 c ) ω 0 c ( Z 0 c ) Y 0 v ω 0 c ( X 0 c ) ω 0 v ( Z 0 c ) Y 0 c ω 0 v ( X 0 c ) ω 0 c ( Z 0 c ) Y 0 c + ω 0 c ( Y 0 c ) ω 0 c ( Z 0 c ) X 0 v + ω 0 c ( Y 0 c ) ω 0 v ( Z 0 c ) X 0 c + ω 0 v ( Y 0 c ) ω 0 c ( Z 0 c ) X 0 c + ( ¨ X 0 c c K 0 c ) ( Y 0 c , Z 0 c ) ( ¨ Y 0 c c K 0 c ) ( X 0 c , Z 0 c ) + K 0 c X 0 c , K 0 c ( Y 0 c , Z 0 c ) K 0 c Y 0 c , K 0 c ( X 0 c , Z 0 c ) .
Proposition 2.
Let ( M , ¨ c , g 0 c , Φ 0 c , ω 0 c , A c ) be the complete lifts of a ( 2 n + 1 ) -dimensional Sasakian statistical manifold in the tangent bundle T 0 M . Then, we have:
1.
R ˘ c ( X 0 c , Y 0 c ) A c = R ¨ c ( X 0 c , Y 0 c ) A c + ω 0 v ( X 0 c ) ( Φ 0 Y 0 ) c + ω 0 c ( X 0 c ) ( Φ 0 Y 0 ) v ω 0 v ( Y 0 c ) ( Φ 0 X 0 ) c ω 0 c ( Y 0 c ) ( Φ 0 X 0 ) v ( ¨ X 0 c c K 0 c ) ( Y 0 c , A c ) + ( ¨ Y 0 c c K 0 c ) ( X 0 c , A c ) .
2.
R ˘ c ( X 0 c , Y 0 c ) A c = R ¨ c ( X 0 c , Y 0 c ) A c + ω 0 v ( X 0 c ) ( Φ 0 Y 0 ) c + ω 0 c ( X 0 c ) ( Φ 0 Y 0 ) v ω 0 v ( Y 0 c ) ( Φ 0 X 0 ) c ω 0 c ( Y 0 c ) ( Φ 0 X 0 ) v + ( ¨ X 0 c c K 0 c ) ( Y 0 c , A c ) ( ¨ Y 0 c c K 0 c ) ( X 0 c , A c ) .
3.
R ˘ c ( A c , X 0 c ) Y 0 c = R ¨ c ( A c , X 0 c ) Y 0 c + ω 0 c ( Y 0 c ) ( Φ 0 X 0 ) v + ω 0 v ( Y 0 c ) ( Φ 0 X 0 ) c g 0 c ( Φ 0 X 0 ) c , Y 0 c A v g 0 c ( Φ 0 X 0 ) v , Y 0 c A c ( ¨ A c c K 0 c ) ( X 0 c , Y 0 c ) + ( ¨ X 0 c c K 0 c ) ( A 0 c , Y 0 c ) + K 0 c A c , K 0 c ( X 0 c , Y 0 c ) K 0 c X 0 c , K 0 c ( A c , Y 0 c ) .
4.
R ˘ c ( A c , X 0 c ) Y 0 c = R ¨ c ( A c , X 0 c ) Y 0 c + ω 0 c ( Y 0 c ) ( Φ 0 X 0 ) v + ω 0 v ( Y 0 c ) ( Φ 0 X 0 ) c g 0 c ( Φ 0 X 0 ) c , Y 0 c A v g 0 c ( Φ 0 X 0 ) v , Y 0 c A c + ( ¨ A c c K 0 c ) ( X 0 c , Y 0 c ) ( ¨ X 0 c c K 0 c ) ( A 0 c , Y 0 c ) + K 0 c A c , K 0 c ( X 0 c , Y 0 c ) K 0 c X 0 c , K 0 c ( A c , Y 0 c ) .
Proof. 
In a Sasakian manifold, we have from [6]
¨ X 0 A = Φ 0 X 0 + ω 0 ( ¨ X 0 A ) A .
Obtaining the complete lifts of Equation (77), we have
¨ X 0 c c A c = ( Φ 0 X 0 ) c + ω 0 c ( ¨ X 0 c c A c ) A v + ω 0 v ( ¨ X 0 c c A c ) A c .
From Equation (29), we have
K 0 c ( X 0 c , A c ) = ω 0 c ( ¨ X 0 c c A c ) A v + ω 0 v ( ¨ X 0 c c A c ) A c .
So,
K 0 c X 0 c , K 0 c ( Y 0 c , A c ) = ω 0 c ( ¨ X 0 c c A c ) ω 0 c ( ¨ Y 0 c c A c ) A v + ω 0 c ( ¨ X 0 c c A c ) ω 0 v ( ¨ Y 0 c c A c ) A c + ω 0 v ( ¨ X 0 c c A c ) ω 0 c ( ¨ Y 0 c c A c ) A c .
Hence, we obtain
K 0 c X 0 c , K 0 c ( Y 0 c , A c ) = K 0 c Y 0 c , K 0 c ( X 0 c , A c ) .
Using Equations (36)–(38) and (81) in Equations (75) and (76), we obtain (1)–(4). □

6.1. Ricci Tensor Associated with Semi-Symmetric Metric Connection of Sasakian Statistical Manifolds in the Tangent Bundle

The complete lifts of the Ricci tensor S ˘ c associated with the connection ˘ c in the tangent bundle T 0 M are given as
S ˘ c ( X 0 c , Y 0 c ) = Trace of the map : Z 0 c R ¨ c ( X 0 c , Y 0 c ) Z 0 c .
Then, from (75) and (76), we have
S ˘ c ( X 0 c , Y 0 c ) = S ¨ c ( X 0 c , Y 0 c ) ( 2 n + 1 ) g 0 c ( Φ 0 X 0 ) c , ( Φ 0 Y 0 ) c + Y 0 c i = 1 2 n + 1 g 0 c ( ( ¨ X 0 c c K 0 c ) ( e i c , e i c ) ( ¨ e i c c K 0 c ) ( X 0 c , e i c ) K 0 c X 0 c , K 0 c ( e i c , e i c ) + K 0 c e i c , K 0 c ( X 0 c , e i c ) , Y 0 c ) ,
and
S ˘ c ( X 0 c , Y 0 c ) = S ¨ c ( X 0 c , Y 0 c ) ( 2 n + 1 ) g 0 c ( Φ 0 X 0 ) c , ( Φ 0 Y 0 ) c + Y 0 c i = 1 2 n + 1 g 0 c ( ( ¨ X 0 c c K 0 c ) ( e i c , e i c ) ( ¨ e i c c K 0 c ) ( X 0 c , e i c ) + K 0 c X 0 c , K 0 c ( e i c , e i c ) K 0 c e i c , K 0 c ( X 0 c , e i c ) , Y 0 c ) .
Theorem 3.
Let ( M , ¨ c , g 0 c , Φ 0 c , ω 0 c , A c ) be the complete lifts of a ( 2 n + 1 ) -dimensional Sasakian statistical manifold in the tangent bundle T 0 M . Then:
1.
The relation between the Ricci tensor S ˘ c of the SSMC ˘ c and the Ricci tensor S ¨ c of the torsion-free connection ¨ c in the tangent bundle T 0 M is given by Equation (83).
2.
The relation between the Ricci tensor S ˘ c of the SSMC ˘ c and the Ricci tensor S ¨ c of the dual connection ¨ c in the tangent bundle T 0 M is given by Equation (84).

6.2. Scalar Curvature Associated with Semi-Symmetric Metric Connection of Sasakian Statistical Manifolds in the Tangent Bundle

From Equations (83) and (84), it follows that
r ˘ c = r ¨ c + 2 n 4 n 2 i , j = 1 2 n + 1 g 0 c ( ( ¨ e j c c K 0 c ) ( e i c , e i c ) ( ¨ e i c c K 0 c ) ( e j c , e i c ) K 0 c e j c , K 0 c ( e i c , e i c ) + K 0 c e i c , K 0 c ( e j c , e i c ) , e j c ) ,
and
r ˘ c = r ¨ c + 2 n 4 n 2 + i , j = 1 2 n + 1 g 0 c ( ( ¨ e j c c K 0 c ) ( e i c , e i c ) ( ¨ e i c c K 0 c ) ( e j c , e i c ) + K 0 c e j c , K 0 c ( e i c , e i c ) K 0 c e i c , K 0 c ( e j c , e i c ) , e j c ) .
where r ˘ c , r ¨ c , and r ¨ c are the complete lifts of the scalar curvatures associated with the SSMC ˘ c , torsion-free connection ¨ c , and dual connection ¨ c in the tangent bundle T 0 M , respectively.
Theorem 4.
Let ( M , ¨ c , g 0 c , Φ 0 c , ω 0 c , A c ) be the complete lifts of a ( 2 n + 1 ) -dimensional Sasakian statistical manifold in the tangent bundle T 0 M . Then:
1.
The relation between the scalar curvature r ˘ c of the SSMC ˘ c and the scalar curvature r ¨ c of the torsion-free connection ¨ c in the tangent bundle T 0 M is given by Equation (85).
2.
The relation between the scalar curvature r ˘ c of the SSMC ˘ c and the scalar curvature r ¨ c of the dual connection ¨ c in the tangent bundle T 0 M is given by Equation (86).
Theorem 5.
In a ( 2 n + 1 ) -dimensional Sasakian statistical manifold in the tangent bundle T 0 M , the complete lift of the Ricci tensor of the Sasakian statistical manifold associated with the SSMC in the tangent bundle T 0 M is said to be Ricci flat if the complete lift of the scalar curvature with respect to torsion-free connection ¨ c and dual connection ¨ c in the tangent bundle T 0 M satisfies
r ¨ c = 2 n + 4 n 2 + i , j = 1 2 n + 1 g c ( ( ¨ e j c c K 0 c ) ( e i c , e i c ) ( ¨ e i c c K 0 c ) ( e j c , e i c ) K 0 c e j c , K 0 c ( e i c , e i c ) + K 0 c e i c , K 0 c ( e j c , e i c ) , e j c ) ,
and
r ¨ c = 2 n + 4 n 2 i , j = 1 2 n + 1 g c ( ( ¨ e j c c K 0 c ) ( e i c , e i c ) ( ¨ e i c c K 0 c ) ( e j c , e i c ) + K 0 c e j c , K 0 c ( e i c , e i c ) K 0 c e i c , K 0 c ( e j c , e i c ) , e j c ) .
Proof. 
Treating S ˘ c ( X 0 c , Y 0 c ) = 0 in Equations (83) and (84), then contracting it with respect to X 0 c and Y 0 c in the tangent bundle T 0 M , we obtain the results. □

7. Example

In this section, we shall show an example of the lifts of a Sasakian statistical manifold in the tangent bundle T 0 M . Let us consider M to be a three-dimensional manifold, which is defined as
M = ( x 1 , x 2 , x 3 ) R 3 ; x 3 0 ,
where R is the set of real numbers. Let x 1 , x 2 , x 3 be given by
e 1 = x 1 , e 2 = x 1 x 1 x 3 + x 2 , e 3 = 1 2 x 3 ,
where { e 1 , e 2 , e 3 } are the linearly independent global frame on M. Let T 0 M be the tangent bundle, and let the one-form ω 0 be given by
ω 0 ( X 0 ) = g 0 ( X 0 , e 3 ) .
The Riemannian metric g 0 is defined by
g 0 ( e i , e j ) = 1 , i = j = 1 , 2 , 3 0 , otherwise .
Let Φ 0 be the tensor field defined by
Φ 0 e i = e 2 , i = 1 e 1 , i = 2 0 , i = 3 .
Using the linearity of Φ 0 and g 0 , we acquire ω 0 ( e 3 ) = 1 , Φ 0 2 X 0 = X 0 + ω 0 ( X 0 ) e 3 and g 0 ( Φ 0 X 0 , Φ 0 Y 0 ) = g 0 ( X 0 , Y 0 ) ω 0 ( X 0 ) ω 0 ( Y 0 ) . Thus, for e 3 = A , the structure ( Φ 0 , A , ω 0 , g 0 ) ) is an almost-contact metric structure on M. In addition, M satisfies
( ˜ X 0 Φ 0 ) Y 0 = ω 0 ( Y 0 ) X 0 g 0 ( X 0 , Y 0 ) e 3 .
Thus, for e 3 = A , M is a Sasakian manifold.
Also, M satisfies
K 0 ( X 0 , ˜ Y 0 e 3 ) + Φ 0 K 0 ( X 0 , Y 0 ) = 0 ,
¨ X 0 ( ˜ Y 0 e 3 ) Φ 0 ¨ X 0 Y 0 = g 0 ( Y 0 , e 3 ) X 0 g 0 ( Y 0 , X 0 ) e 3 ,
¨ X 0 e 3 = ˜ X 0 e 3 + g 0 ( ¨ X 0 e 3 , e 3 ) e 3 .
Then, M is called a Sasakian statistical manifold.
In tangent bundle T 0 M , let the complete and vertical lifts of e 1 , e 2 , e 3 be e 1 c , e 2 c , e 3 c and e 1 v , e 2 v , e 3 v on M, and let g 0 c be the complete lift of the Riemannian metric g 0 on T 0 M such that
g c ( X 0 v , e 3 c ) = g c ( X 0 , e 3 ) v = ω 0 ( X 0 ) v
g c ( X 0 c , e 3 c ) = g c ( X 0 , e 3 ) c = ω 0 ( X 0 ) c
g c ( e 3 c , e 3 c ) = 1 , g v ( X 0 v , e 3 c ) = 0 , g v ( e 3 v , e 3 c ) = 0 ,
and so on. Let Φ 0 c and Φ 0 v be the complete and vertical lifts of the ( 1 , 1 ) tensor field Φ 0 defined by
Φ 0 v ( e 3 v ) = Φ 0 c ( e 3 c ) = 0 ,
Φ 0 v ( e 1 v ) = e 1 v , Φ 0 c ( e 1 c ) = e 1 c ,
Φ 0 v ( e 2 v ) = e 2 v , Φ 0 c ( e 2 c ) = e 2 c ,
Φ 0 v ( e 3 v ) = e 3 v , Φ 0 c ( e 3 c ) = e 3 c .
Using the linearity of Φ 0 and g 0 , we infer that
( Φ 0 2 Y 0 ) c = Y 0 c + ω 0 c ( Y 0 ) e 3 v + ω 0 v ( Y 0 ) e 3 c ,
g c ( Φ 0 e 3 ) c , ( Φ 0 e 2 ) c = g 0 c ( e 3 c , e 2 c ) ω 0 c ( e 3 c ) ω 0 v ( e 2 c ) ω 0 v ( e 3 c ) ω 0 c ( e 2 c ) .
( ˜ e 3 c c Φ 0 c ) e 2 c = ω 0 c ( e 2 c ) e 3 v + ω 0 v ( e 2 c ) e 3 c g 0 c ( e 3 c , e 2 c ) A v g 0 c ( e 3 v , e 2 c ) A c .
Also,
K 0 c ( e 3 c , ˜ e 2 c c A c ) + Φ 0 c K 0 c ( e 3 c , e 2 c ) = 0 ,
¨ e 3 c c ( ˜ e 2 c c A c ) Φ 0 c ¨ e 3 c c e 2 c = g 0 c ( e 2 c , A c ) e 3 v + g 0 c ( e 2 v , A c ) e 3 c g 0 c ( e 2 c , e 3 c ) A c g 0 c ( e 2 v , e 3 c ) A c ,
¨ e 3 c c A c = ˜ e 3 c c A c + g 0 c ( A c , ¨ e 3 c c A c ) A v + g 0 c ( A v , ¨ e 3 c c A c ) A v .
Then, for e 3 = A in Equations (93)–(100), the structure ( Φ 0 c , A c , ω 0 c , g 0 c ) is an almost-contact metric structure on T 0 M and satisfies the relation (102). Then, ( Φ 0 c , A c , ω 0 c , g 0 c , T 0 M ) is a Sasakian manifold. Also, this structure satisfies the relation (103)–(105) and is called a Sasakian statistical manifold.

Author Contributions

Conceptualization and methodology, R.K., S.S., N.B.T., L.C., and U.C.D.; formal analysis, R.K., S.S., N.B.T., L.C., and U.C.D.; writing—original draft preparation, R.K., S.S., N.B.T., L.C., and U.C.D.; writing—review and editing, R.K., S.S., N.B.T., L.C., and U.C.D.; supervision, S.S.; project administration, S.S.; and funding acquisition, N.B.T. All authors have read and agreed to the published version of the manuscript.

Funding

This project was supported by the Researchers Supporting Project (RSP2024R413), King Saud University, Riyadh, Saudi Arabia.

Institutional Review Board Statement

Not applicable.

Data Availability Statement

Data are contained within the article.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Friedman, A.; Schouten, J.A. Uber die Geometrie der halbsymmetrischen Ubertragungen. Math. Zeitschr. 1924, 21, 211–223. [Google Scholar] [CrossRef]
  2. Hayden, H.A. sub-spaces of a space with torsion. Proc. Lond. Math. Soc. 1932, 34, 27–50. [Google Scholar] [CrossRef]
  3. Yano, K. On semi-symmetric metric connections. Rev. Roum. Math. Pures Appl. 1970, 15, 1579–1586. [Google Scholar]
  4. Amari, S. Differential-Geometrical Methods in Statistics; Springer: New York, NY, USA, 1985. [Google Scholar] [CrossRef]
  5. Furuhata, H. Hypersurface in statistical manifolds. Differ. Geom. Appl. 2009, 27, 420–429. [Google Scholar] [CrossRef]
  6. Furuhata, H.; Hasegawa, I.; Okuyama, Y.; Sato, K.; Shahid, M. Sasakian statistical manifolds. J. Geom. Phys. 2017, 117, 179–186. [Google Scholar] [CrossRef]
  7. Furuhata, H.; Hasegawa, I.; Okuyama, Y.; Sato, K. Kenmotsu statistical manifolds and warped product. J. Geom. 2017, 108, 1175–1191. [Google Scholar] [CrossRef]
  8. Kurose, T. Geometry of Statistical Manifolds in Mathematics in the 21st Century; Nihon-Hyouron-Sha: Tokyo, Japan, 2004. [Google Scholar]
  9. Kazan, S.; Kazan, A. Sasakian statistical manifolds with semi-symmetric metric connection. Univers. J. Math. Appl. 2018, 1, 226–232. [Google Scholar] [CrossRef]
  10. Bagher, M.; Balgeshir, K.; Salahvarzi, S. Curvature of semi-symmetric metric connections on statistical manifolds. Commun. Korean Math. Soc. 2021, 36, 149–164. [Google Scholar] [CrossRef]
  11. Yildirim, M. Semi-symmetric non-metric connections on statistical manifolds. J. Geom. Phys. 2022, 176, 104505. [Google Scholar] [CrossRef]
  12. Yano, K.; Kobayashi, S. Prolongations of tensor fields and connections to tangent bundles I general theory. J. Math. Soc. Jpn. 1966, 18, 194–210. [Google Scholar] [CrossRef]
  13. Yano, K.; Ishihara, S. Tangent and Cotangent Bundles: Differential Geometry; Marcel Dekker, Inc.: New York, NY, USA, 1973; Available online: https://www.worldcat.org/title/713986 (accessed on 1 December 2023).
  14. Tani, M. Prolongations of hypersurfaces to tangent bundles. Kodai Math. Semin. Rep. 1969, 21, 85–96. [Google Scholar] [CrossRef]
  15. Pandey, P.; Chaturvedi, B.B. On a Kaehler manifold equipped with lift of quarter symmetric non-metric connection. Facta Univ. Ser. Math. Inform. 2018, 33, 539–546. [Google Scholar]
  16. Kumar, R.; Colney, L.; Khan, M.N.I. Proposed theorems on the lifts of Kenmotsu manifolds admitting a non-symmetric non-metric connection (NSNMC) in the tangent bundle. Symmetry 2023, 15, 2037. [Google Scholar] [CrossRef]
  17. Kumar, R.; Colney, L.; Shenawy, S.; Turki, N.B. Tangent bundles endowed with quarter-symmetric non-metric connection (QSNMC) in a Lorentzian Para-Sasakian manifold. Mathematics 2023, 11, 4163. [Google Scholar] [CrossRef]
  18. Khan, M.N.I. Complete lifts of a semi-symmetric metric P-connection on a Riemannian manifold to its tangent bundle. Int. J. Math. Comput. Sci. 2022, 17, 909–916. Available online: http://ijmcs.future-in-tech.net/17.2/R-MohammadNazrulIslamKhan.pdf (accessed on 1 December 2023).
  19. Khan, M.N.I. Submanifolds of a Riemannian manifold endowed with a new type of semi-symmetric non-metric connection in the tangent bundle. Int. J. Math. Comput. Sci. 2022, 17, 265–275. Available online: http://ijmcs.future-in-tech.net/17.1/R-MohammadKhan.pdf (accessed on 1 December 2023).
  20. Khan, M.N.I. Liftings from a para-sasakian manifold to its tangent bundles. Filomat 2023, 37, 6727–6740. [Google Scholar]
  21. Khan, M.N.I.; Bahadur, O. Tangent bundles of LP-Sasakian manifold endowed with generalized symmetric metric connection. Facta Univ. Ser. Math. Inform. 2023, 38, 125–139. [Google Scholar]
  22. Khan, M.N.I.; De, U.C.; Velimirovic, L.S. Lifts of a quarter-symmetric metric connection from a Sasakian manifold to its tangent bundle. Mathematics 2023, 11, 53. [Google Scholar] [CrossRef]
  23. Khan, M.N.I.; Mofarreh, F.; Haseeb, A. Tangent bundles of P-Sasakian manifolds endowed with a quarter-symmetric metric connection. Symmetry 2023, 15, 753. [Google Scholar] [CrossRef]
  24. Khan, M.N.I.; Mofarreh, F.; Haseeb, A.; Saxena, M. Certain results on the lifts from an LP-Sasakian manifold to its tangent bundles associated with a quarter-symmetric metric connection. Symmetry 2023, 15, 1553. [Google Scholar] [CrossRef]
  25. Kumar, R.; Colney, L.; Khan, M.N.I. Lifts of a semi-symmetric non-metric connection from statistical manifolds to tangent bundle. Results Nonlinear Anal. 2023, 6, 50–65. [Google Scholar]
  26. Blair, D.E. Contact manifolds in Riemannian geometry. In Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 1976; Volume 509. [Google Scholar] [CrossRef]
  27. Noguchi, M. Geometry of statistical manifolds, Differential. Geom. Appl. 1992, 2, 197–222. Available online: https://core.ac.uk/download/pdf/81988665.pdf (accessed on 1 December 2023). [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Kumar, R.; Shenawy, S.; Turki, N.B.; Colney, L.; De, U.C. Lifts of a Semi-Symmetric Metric Connection from Sasakian Statistical Manifolds to Tangent Bundle. Mathematics 2024, 12, 226. https://doi.org/10.3390/math12020226

AMA Style

Kumar R, Shenawy S, Turki NB, Colney L, De UC. Lifts of a Semi-Symmetric Metric Connection from Sasakian Statistical Manifolds to Tangent Bundle. Mathematics. 2024; 12(2):226. https://doi.org/10.3390/math12020226

Chicago/Turabian Style

Kumar, Rajesh, Sameh Shenawy, Nasser Bin Turki, Lalnunenga Colney, and Uday Chand De. 2024. "Lifts of a Semi-Symmetric Metric Connection from Sasakian Statistical Manifolds to Tangent Bundle" Mathematics 12, no. 2: 226. https://doi.org/10.3390/math12020226

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop