Applications of Extended Kummer’s Summation Theorem
Abstract
:1. Introduction
2. Extensions of Gauss’s Second Summation Theorem and Bailey’s Summation Theorem
3. Extensions of Summations (17) to (21)
- and
- (a)
- (b)
- (c)
- (d)
- (e)
4. Extension of Results (22) and (23)
5. Extensions of Bailey’s Results (24) and (25)
6. Extensions of Results (26) and (27)
7. Extension of Classical Dixon’s Summation Theorem
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bailey, W.N. Generalized Hypergeometric Series; Reprinted by Stechert-Hafner, Inc.: New York, NY, USA, 1964; Cambridge University Press: Cambridge, UK, 1935. [Google Scholar]
- Andrews, G.E.; Askey, R.; Roy, R. Special Functions, Encyclopedia of Mathematics and its Applications; Cambridge University Press: Cambridge, UK, 1999; Volume 71. [Google Scholar]
- Rainville, E.D. Special Functions; Chelsea Publishing: New York, NY, USA, 1971. [Google Scholar]
- Slater, L.J. Generalized Hypergeometric Functions; Cambridge University Press: Cambridge, UK, 1960. [Google Scholar]
- Brychkov, Y.A. Hand Book of Special Functions:Derivatives, Integrals, Series and Other Formulas; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Berndt, B.C. Ramanujan’s Notebooks, Part II; Springer: Berlin, Germany, 1989. [Google Scholar]
- Bailey, W.N. Products of generalized hypergeometric series. Proc. Lond. Math. Soc. 1928, 28, 242–254. [Google Scholar] [CrossRef]
- Rakha, M.A.; Rathie, A.K. Generalizations of classical summation theorems for the series 2F1 and 3F2. Integral Transform. Spec. Func. 2011, 22, 823–840. [Google Scholar] [CrossRef]
- Kim, Y.S.; Rakha, M.A.; Rathie, A.K. Extensions of certain classical summation theorems for the series 2F1, 3F2 and 4F3 with applications in Ramanujan’s summations. Int. J. Math. Math. Sci. 2010, 26, 3095031. [Google Scholar]
- Rathie, A.K.; Pairs, R.B. An extension of the Euler’s type transformation for the series 3F2 series. Far East J. Math. Sci. 2007, 27, 43–48. [Google Scholar]
- Prudnikov, A.P.; Brychkov, Y.A.; Marichev, O.I. More Special Functions (Integrals and Series); Gordon and Breach: New York, NY, USA, 1990; Volume 3. [Google Scholar]
- Verma, A.; Younis, J.; Pandey, V.K.; Aydi, H. Some Summation Formulas for the Generalized Kampé de Fériet Function. Math. Probl. Eng. 2021, 2021, 2861820. [Google Scholar] [CrossRef]
- Wang, X.; Chen, Y. Finite summation formulas of double hypergeometric functions. Integral Transform. Spec. Funct. 2016, 28, 239–253. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Rathie, A.K.; Lim, E.; Kim, H. Applications of Extended Kummer’s Summation Theorem. Mathematics 2024, 12, 3030. https://doi.org/10.3390/math12193030
Wang X, Rathie AK, Lim E, Kim H. Applications of Extended Kummer’s Summation Theorem. Mathematics. 2024; 12(19):3030. https://doi.org/10.3390/math12193030
Chicago/Turabian StyleWang, Xiaoxia, Arjun K. Rathie, Eunyoung Lim, and Hwajoon Kim. 2024. "Applications of Extended Kummer’s Summation Theorem" Mathematics 12, no. 19: 3030. https://doi.org/10.3390/math12193030
APA StyleWang, X., Rathie, A. K., Lim, E., & Kim, H. (2024). Applications of Extended Kummer’s Summation Theorem. Mathematics, 12(19), 3030. https://doi.org/10.3390/math12193030