General Fractional Economic Dynamics with Memory †
Abstract
:1. Introduction
- Luchko’s works devoted to the formulation of his form of GFC in 2021 [82,83,84,85], and its development and generalization [86,87,88,89,90,91,92,93,94,95,96,97], some of which were written with co-authors. The works include the general fractional operational calculus [84,89,96], the GFC on a finite interval proposed by Al-Refai and Luchko paper [93], the GFC of operators of distributed order suggested by Al-Refai and Luchko paper [94] and other.
- Works, in which the Luchko GFC is developed and generalized [98,99,100,101,102,103,104,105,106,107,108]. Note these works include the GF vector calculus [98], the GFC the Riesz form [103], the scale-invariant GFC based Mellin convolution operators [104], the GFC with construction that is proposed by Al-Refai and Fernandez [106,107,108], the parametric GFC [105,107], and some others types.
2. Natural Growth Model with Memory
2.1. Natural Growth Model without Memory
- is the value of the output;
- is the price;
- m is the share of the profit ();
- a is the marginal costs;
- b is the independent costs that do not depend on the value of output;
- is the marginal productivity of capital.
2.2. General Fractional Integrals and Derivatives
2.3. Generalization of Growth Model Using General Memory
3. GF Equation of Natural Growth with Memory
3.1. Equation of Economic Growth with General Memory
3.2. Solutions of Equations of Growth with General Memory
4. Non-Standard Properties and Examples of Dynamical Maps with Memory
4.1. Properties of Economic Dynamical Maps with Memory
4.2. Examples of Economic Dynamical Maps with Memory
5. Example of Natural Growth with Power-Law Memory
6. Examples of Growth with a General Form of Memory
7. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Allen, R.G.D. Mathematical Economics, 2nd ed.; Macmillan: London, UK, 1963; 812p, ISBN 978-1-349-81547-0. [Google Scholar] [CrossRef]
- Allen, R.G.D. Macro-Economic Theory. A Mathematical Treatment; Palgrave Macmillan: London, UK, 1967; 420p, ISBN 978-1-349-81541-8. [Google Scholar] [CrossRef]
- Romer, D. Advanced Macroeconomics, 3rd ed.; McGraw-Hill Companies: Boston, MA, USA, 2006; 678p, ISBN 978-0-07-287730-8. [Google Scholar]
- Volgina, O.A.; Golodnaya, N.Y.; Odiyako, N.N.; Shuman, G.I. Third edition. Mathematical Modeling of Economic processes and Systems; Knorus: Moscow, Russia, 2016; 196p, ISBN 978-5-406-04805-4. [Google Scholar]
- Boltzmann, L. Theory of elastic aftereffect [Zur Theorie der elastischen Nachwirkung]. Wien Akad. Sitzungsber 1874, 70, 275–306. (In German) [Google Scholar]
- Boltzmann, L. Theory of elastic aftereffect [Zur Theorie der elastischen Nachwirkung]. Ann. Der Phys. Und Chemie Erganzungsband Vii. 1876, 7, 624–654. Available online: http://gallica.bnf.fr/ark:/12148/bpt6k15009g/f637.image.langDE (accessed on 20 July 2024). (In German).
- Boltzmann, L. Theory of elastic aftereffect [Zur Theorie der elastischen Nachwirkung]. In Wissenschaftliche Abhandlungen; Hasenohrl, F., Ed.; Cambridge University Press: Cambridge, NY, USA, 2012; Volume 1, pp. 616–644. (In German) [Google Scholar] [CrossRef]
- Boltzmann, L. Theory of elastic aftereffect [Zur Theorie der elastischen Nachwirkung]. In Wissenschaftliche Abhandlungen; Hasenohrl, F., Ed.; Cambridge University Press: Cambridge, NY, USA, 2012; Volume 2, pp. 318–320. (In German) [Google Scholar] [CrossRef]
- Boltzmann, L. On some problems of the theory of elastic aftereffect and on a new method to observe vibrations by means of mirror reading, without burdening the vibrating body with a mirror of considerable mass [Uber einige Probleme der Theorie der elastischen Nachwirkung und uber eine neue Methode, Schwingungen mittels Spiegelablesung zu beobachten, ohne den schwingenden Korper mit einem Spiegel von erheblicher Masse zu belasten]. In Wissenschaftliche Abhandlungen; Hasenohrl, F., Ed.; Cambridge University Press: Cambridge, NY, USA, 2012; Volume 2, pp. 224–249. (In German) [Google Scholar] [CrossRef]
- Volterra, V. On the mathematical theory of hereditary phenomena [Sur la theorie mathematique des phenomenes hereditaires]. J. Math. Pures Appl. 1928, 7, 249–298. Available online: http://gallica.bnf.fr/ark:/12148/bpt6k107620n/f257n50.capture (accessed on 20 July 2024). (In French).
- Volterra, V. Functional theory applied to hereditary phenomena [La teoria dei funzionali applicata ai fenomeni ereditari]. In Proceedings of the International Congress of Mathematicians: Bologna [Atti del Congresso internazionale dei matematici: Bologna], Bologna, Italy, 3–10 September 1928; Volume 1, pp. 215–232. (In Italian). [Google Scholar]
- Volterra, V. Theory of Functionals and of Integral and Integro-Differential Equations; Blackie and Son Ltd.: London, UK, 1930; 226p. [Google Scholar]
- Volterra, V. Mathematical Works: Memories and Notes [Opere Matematiche: Memorie e Note]; Accademia Nazionale dei Lincei: Roma, Italy, 1962; 538p. (In Italian) [Google Scholar]
- Volterra, V. Theory of Functionals and of Integral and Integro-Differential Equations; Dover: New York, NY, USA, 2005; 288p, ISBN 978-0486442846. [Google Scholar]
- Tarasova, V.V.; Tarasov, V.E. Concept of dynamic memory in economics. Commun. Nonlinear Sci. Numer. Simul. 2018, 55, 127–145. [Google Scholar] [CrossRef]
- Wang, C.C. The principle of fading memory. Arch. Ration. Mech. Anal. 1965, 18, 343–366. [Google Scholar] [CrossRef]
- Coleman, B.D.; Mizel, V.J. A general theory of dissipation in materials with memory. Arch. Ration. Mech. Anal. 1967, 27, 255–274. [Google Scholar] [CrossRef]
- Coleman, B.D.; Mizel, V.J. Norms and semi-groups in the theory of fading memory. Arch. Ration. Mech. Anal. 1966, 23, 87–123. [Google Scholar] [CrossRef]
- Coleman, B.D.; Mizel, V.J. On the general theory of fading memory. Arch. Ration. Mech. Anal. 1968, 29, 18–31. [Google Scholar] [CrossRef]
- Saut, J.C.; Joseph, D.D. Fading memory. Arch. Ration. Mech. Anal. 1983, 81, 53–95. [Google Scholar] [CrossRef]
- Granger, C.W.J. The Typical Spectral Shape of an Economic Variable; Technical Report No.11; Department of Statistics, Stanford University: Stanford, CA, USA, 1964; p. 21. Available online: https://statistics.stanford.edu/technical-reports/typical-spectral-shape-economic-variable (accessed on 20 July 2024).
- Granger, C.W.J. The typical spectral shape of an economic variable. Econometrica 1966, 34, 150–161. Available online: https://www.econometricsociety.org/publications/econometrica/1966/01/01/typical-spectral-shape-economic-variable (accessed on 20 July 2024). [CrossRef]
- Granger, C.W.J. Essays in Econometrics: Collected Papers of Clive W. J. Granger. Volume I. Spectral Analysis, Seasonality, Nonlinearity, Methodology, and Forecasting; Ghysels, E., Swanson, N.R., Watson, M.W., Eds.; Cambridge University Press: Cambridge, NY, USA, 2001; 523p. [Google Scholar]
- Granger, C.W.J.; Joyeux, R. An introduction to long memory time series models and fractional differencing. J. Time Ser. Anal. 1980, 1, 15–39. [Google Scholar] [CrossRef]
- Granger, C.W.J. Essays in Econometrics Collected Papers of Clive W.J. Granger. Volume II: Causality, Integration and Cointegration, and Long Memory; Ghysels, E., Swanson, N.R., Watson, M.W., Eds.; Cambridge University Press: Cambridge, NY, USA, 2001; 398p, ISBN 978-0-521-79207-3. [Google Scholar]
- Granger, C.W.J. Current perspectives on long memory processes. Acad. Econ. Pap. 2000, 28, 1–16. [Google Scholar]
- Beran, J. Statistics for Long-Memory Processes; Capman and Hall: New York, NY, USA, 1994; 315p, ISBN 0-412-04901-5. [Google Scholar]
- Beran, J.; Feng, Y.; Ghosh, S.; Kulik, R. Long-Memory Processes: Probabilistic Properties and Statistical Methods; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2013; 884p, ISBN 978-3-642-35511-0. [Google Scholar]
- Palma, W. Long-Memory Time Series: Theory and Methods; Wiley-InterScience: Hoboken, NJ, USA, 2007; 304p, ISBN 978-0-470-11402-5. [Google Scholar] [CrossRef]
- Robinson, P.M. (Ed.) Time Series with Long Memory; Series: Advanced Texts in Econometrics; Oxford University Press: Oxford, UK, 2003; 392p, ISBN 978-0199257300. [Google Scholar]
- Teyssiere, G.; Kirman, A.P. (Eds.) Long Memory in Economics; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2007; 390p. [Google Scholar] [CrossRef]
- Tschernig, R. Wechselkurse, Unsicherheit und Long Memory; Physica: Heidelberg, Germany, 1994; 232p, ISBN 978-3-7908-0753-0. (In German) [Google Scholar] [CrossRef]
- Baillie, R.N. Long memory processes and fractional integration in econometrics. J. Econom. 1996, 73, 5–59. [Google Scholar] [CrossRef]
- Parke, W.R. What is fractional integration? Rev. Econ. Stat. 1999, 81, 632–638. [Google Scholar] [CrossRef]
- Banerjee, A.; Urga, G. Modelling structural breaks, long memory and stock market volatility: An overview. J. Econom. 2005, 129, 1–34. [Google Scholar] [CrossRef]
- Gil-Alana, L.A.; Hualde, J. Fractional Integration and Cointegration: An Overview and an Empirical Application. In Palgrave Handbook of Econometrics. Volume 2: Applied Econometrics; Mills, T.C., Patterson, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 434–469. [Google Scholar] [CrossRef]
- Grunwald, A.K. About “limited” derivations their application [Uber “begrenzte” Derivationen und deren Anwendung]. Z. Fur Angew. Math. Und Phys. 1867, 12, 441–480. Available online: https://www.deutsche-digitale-bibliothek.de/item/57U4JANM6MPP2QDG3TKZTG5TKAI7AUBF (accessed on 20 July 2024). (In German).
- Letnikov, A.V. Theory of differentiation with arbitrary pointer [Teoriya differenchirovaniya s proizvolnym ukazatelem]. Mat. Sb. 1868, 3, 1–68. Available online: http://mi.mathnet.ru/eng/msb8039 (accessed on 20 July 2024). (In Russian).
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach: New York, NY, USA, 1993; 1006p. [Google Scholar]
- Kiryakova, V. Generalized Fractional Calculus and Applications; Longman and J. Wiley: New York, NY, USA, 1994; 360p, ISBN 9780582219779. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1998; 340p, ISBN 978-0-12-558840-9. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006; 523p, ISBN 978-0-444-51832-3. [Google Scholar]
- Diethelm, F. The Analysis of Fractional Differential Equations. An Application-Oriented Exposition Using Differential Operators of Caputo Type; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar] [CrossRef]
- Kochubei, A.; Luchko, Y. (Eds.) Handbook of Fractional Calculus with Applications. Volume 1. Basic Theory; Walter de Gruyter GmbH: Berlin, Germany; Boston, MA, USA, 2019; 481p. [Google Scholar] [CrossRef]
- Kochubei, A.; Luchko, Y. (Eds.) Handbook of Fractional Calculus with Applications. Volume 2. Fractional Differential Equations; Walter de Gruyter GmbH: Berlin, Germany; Boston, MA, USA, 2019; 519p. [Google Scholar] [CrossRef]
- Letnikov, A.V. On the historical development of the theory of differentiation with arbitrary index. Sb. Math. Mat. Sb. 1868, 3, 85–112. Available online: http://mi.mathnet.ru/eng/msb8048 (accessed on 20 July 2024).
- Ross, B. A brief history and exposition of the fundamental theory of fractional calculus. In Fractional Calculus and Its Applications. Proceedings of the International Conference Held at the University of New Haven, June 1974; Series: Lecture Notes in Mathematics, 457; Springer: Berlin/Heidelberg, Germany, 1975; pp. 1–36. [Google Scholar] [CrossRef]
- Kiryakova, V. A brief story about the operators of the generalized fractional calculus. Fract. Calc. Appl. Anal. 2008, 11, 203–220. [Google Scholar]
- Tenreiro Machado, J.A.; Kiryakova, V.; Mainardi, F. Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 1140–1153. [Google Scholar] [CrossRef]
- Tenreiro Machado, J.A.; Galhano, A.M.; Trujillo, J.J. Science metrics on fractional calculus development since 1966. Fract. Calc. Appl. Anal. 2013, 16, 479–500. [Google Scholar] [CrossRef]
- Valerio, D.J.; Tenreiro Machado, J.A.; Kiryakova, V. Some pioneers of the applications of fractional calculus. Fract. Calc. Appl. Anal. 2014, 17, 552–578. [Google Scholar] [CrossRef]
- Tenreiro Machado, J.A.; Kiryakova, V. The chronicles of fractional calculus. Fract. Calc. Appl. Anal. 2017, 20, 307–336. [Google Scholar] [CrossRef]
- Tarasov, V.E. On history of mathematical economics: Application of fractional calculus. Mathematics 2019, 7, 509. [Google Scholar] [CrossRef]
- Rogosin, S.; Dubatovskaya, M. Fractional calculus in Russia at the end of XIX century. Mathematics 2021, 9, 1736. [Google Scholar] [CrossRef]
- Hilfer, R.; Luchko, Y. Desiderata for fractional derivatives and integrals. Mathematics 2019, 7, 149. [Google Scholar] [CrossRef]
- Tarasov, V.E. No violation of the Leibniz rule. No fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 2945–2948. [Google Scholar] [CrossRef]
- Cresson, J.; Szafranska, A. Comments on various extensions of the Riemann-Liouville fractional derivatives: About the Leibniz and chain rule properties. Commun. Nonlinear Sci. Numer. Simul. 2020, 82, 104903. [Google Scholar] [CrossRef]
- Tarasov, V.E. On chain rule for fractional derivatives. Commun. Nonlinear Sci. Numer. Simul. 2016, 30, 1–4. [Google Scholar] [CrossRef]
- Tarasov, V.E. No nonlocality. No fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 2018, 62, 157–163. [Google Scholar] [CrossRef]
- Tarasov, V.E. Rules for fractional-dynamic generalizations: Difficulties of constructing fractional dynamic models. Mathematics 2019, 7, 554. [Google Scholar] [CrossRef]
- Stynes, M. Fractional-order derivatives defined by continuous kernels are too restrictive. Appl. Math. Lett. 2018, 85, 22–26. [Google Scholar] [CrossRef]
- Giusti, A. A comment on some new definitions of fractional derivative. Nonlinear Dyn. 2018, 93, 1757–1763. [Google Scholar] [CrossRef]
- Garrappa, R. Neglecting nonlocality leads to unreliable numerical methods for fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 2019, 70, 302–306. [Google Scholar] [CrossRef]
- Diethelm, K.; Garrappa, R.; Giusti, A.; Stynes, M. Why fractional derivatives with nonsingular kernels should not be used? Fract. Calc. Appl. Anal. 2020, 23, 610–634. [Google Scholar] [CrossRef]
- Tarasov, V.E.; Tarasova, S.S. Fractional derivatives and integrals: What are they needed for? Mathematics 2020, 8, 164. [Google Scholar] [CrossRef]
- Tarasov, V.E. (Ed.) Handbook of Fractional Calculus with Applications. Volume 4. Application in Physics. Part A; Walter de Gruyter GmbH: Berlin, Germany; Boston, MA, USA, 2019; 306p. [Google Scholar] [CrossRef]
- Tarasov, V.E. (Ed.) Handbook of Fractional Calculus with Applications. Volume 5. Application in Physics. Part B; Walter de Gruyter GmbH: Berlin, Germany; Boston, MA, USA, 2019; 319p. [Google Scholar] [CrossRef]
- Tarasov, V.E. Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media; Springer: New York, NY, USA, 2010; 505p. [Google Scholar] [CrossRef]
- Klafter, J.; Lim, S.C.; Metzler, R. (Eds.) Fractional Dynamics. Recent Advances; World Scientific: Singapore, 2011. [Google Scholar] [CrossRef]
- Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models; World Scientific: Singapore, 2010. [Google Scholar] [CrossRef]
- Uchaikin, V.; Sibatov, R. Fractional Kinetics in Solids: Anomalous probability Transport in Semiconductors, Dielectrics and Nanosystems; World Scientific: Singapore, 2013. [Google Scholar] [CrossRef]
- Atanackovic, T.; Pilipovic, S.; Stankovic, B.; Zorica, D. Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes; Wiley-ISTE: London, UK; Hoboken, NJ, USA, 2014. [Google Scholar] [CrossRef]
- Atanackovic, T.; Pilipovic, S.; Stankovic, B.; Zorica, D. Fractional Calculus with Applications in Mechanics: Wave Propagation, Impact and Variational Principles; Wiley-ISTE: London, UK; Hoboken, NJ, USA, 2014. [Google Scholar] [CrossRef]
- Povstenko, Y. Fractional Thermoelasticity; Springer International Publishing: Cham, Switzerland; Berlin/Heidelberg, Germany; New York, NY, USA; Dordrecht, The Netherlands; London, UK, 2015. [Google Scholar] [CrossRef]
- Uchaikin, V.; Sibatov, R. Fractional Kinetics in Space. Anomalous Transport Models; Worls Scientific: Singapore, 2018; 300p. [Google Scholar] [CrossRef]
- Tarasov, V.E. (Ed.) Mathematical Economics: Application of Fractional Calculus; MDPI: Basel, Switzerland, 2020. [Google Scholar] [CrossRef]
- Tarasov, V.E.; Tarasova, V.V. Economic Dynamics with Memory: Fractional Calculus Approach; De Gruyter: Berlin, Germany; Boston, MA, USA, 2021; 602p. [Google Scholar] [CrossRef]
- Ionescu, C.; Lopes, A.; Copot, D.; Tenreiro Machado, J.; Bates, J. The role of fractional calculus in modeling biological phenomena: A review. Commun. Nonlinear Sci. Numer. Simul. 2017, 51, 141–159. [Google Scholar] [CrossRef]
- Sonine, N. On the generalization of an Abel formula. (Sur la generalisation d’une formule d’Abel). Acta Math. 1884, 4, 171–176. (In French) [Google Scholar] [CrossRef]
- Sonin, N.Y. Generalization of one Abel formula. Notes Novorossiysk Soc. Nat. 1885, 9, 1–8. [Google Scholar]
- Sonin, N.Y. On the generalization of an Abel formula. In Investigations of Cylinder Functions and Special Polynomials; GTTI: Moscow, Russia, 1954; pp. 148–154. [Google Scholar]
- Luchko, Y. General fractional integrals and derivatives with the Sonine kernels. Mathematics 2021, 9, 594. [Google Scholar] [CrossRef]
- Luchko, Y. General fractional integrals and derivatives of arbitrary order. Symmetry 2021, 13, 755. [Google Scholar] [CrossRef]
- Luchko, Y. Operational calculus for the general fractional derivatives with the Sonine kernels. Fract. Calc. Appl. Anal. 2021, 24, 338–375. [Google Scholar] [CrossRef]
- Luchko, Y. Special functions of fractional calculus in the form of convolution series and their applications. Mathematics 2021, 9, 2132. [Google Scholar] [CrossRef]
- Luchko, Y. Convolution series and the generalized convolution Taylor formula. Fract. Calc. Appl. Anal. 2022, 25, 207–228. [Google Scholar] [CrossRef]
- Luchko, Y. Fractional differential equations with the general fractional derivatives of arbitrary order in the Riemann-Liouville sense. Mathematics 2022, 10, 849. [Google Scholar] [CrossRef]
- Luchko, Y. The 1st level general fractional derivatives and some of their properties. J. Math. Sci. 2022, 266, 709–722. [Google Scholar] [CrossRef]
- Al-Kandari, M.; Hanna, L.A.M.; Luchko, Y. Operational calculus for the general fractional derivatives of arbitrary order. Mathematics 2022, 10, 1590. [Google Scholar] [CrossRef]
- Al-Refai, M.; Luchko, Y. Comparison principles for solutions to the fractional differential inequalities with the general fractional derivatives and their applications. J. Differ. Equ. 2022, 319, 312–324. [Google Scholar] [CrossRef]
- Jararheh, M.; Al-Refai, M.; Luchko, Y. A Self-Adjoint Fractional Sturm-Liouville Problem with the General Fractional Derivatives. SSNR 2023. Available online: https://ssrn.com/abstract=4539250 (accessed on 20 July 2024). [CrossRef]
- Luchko, Y. General fractional integrals and derivatives and their applications. Phys. D Nonlinear Phenom. 2023, 455, 133906. [Google Scholar] [CrossRef]
- Al-Refai, M.; Luchko, Y. The general fractional integrals and derivatives on a finite interval. Mathematics 2023, 11, 1031. [Google Scholar] [CrossRef]
- Al-Refai, M.; Luchko, Y. General fractional calculus operators of distributed order. Axioms 2023, 12, 1075. [Google Scholar] [CrossRef]
- Luchko, Y. Symmetrical Sonin kernels in terms of the hypergeometric functions. arXiv 2023, arXiv:2401.00558. [Google Scholar]
- Alkandari, M.; Luchko, Y. Operational calculus for the 1st level general fractional derivatives and its applications. arXiv 2024, arXiv:2406.08642. [Google Scholar]
- Diethelm, K.; Kiryakova, V.; Luchko, Y.; Tenreiro Machado, J.A.; Tarasov, V.E. Trends, directions for further research, and some open problems of fractional calculus. Nonlinear Dyn. 2022, 107, 3245–3270. [Google Scholar] [CrossRef]
- Tarasov, V.E. General fractional vector calculus. Mathematics 2021, 9, 2816. [Google Scholar] [CrossRef]
- Tarasov, V.E. General fractional calculus: Multi-kernel approach. Mathematics 2021, 9, 1501. [Google Scholar] [CrossRef]
- Tarasov, V.E. Nonlocal probability theory: General fractional calculus approach. Mathematics 2022, 10, 3848. [Google Scholar] [CrossRef]
- Tarasov, V.E. General nonlocal probability of arbitrary order. Entropy 2023, 25, 919. [Google Scholar] [CrossRef] [PubMed]
- Tarasov, V.E. Multi-kernel general fractional calculus of abitrary order. Mathematics 2023, 11, 1726. [Google Scholar] [CrossRef]
- Tarasov, V.E. General fractional calculus in multi-dimensional space: Riesz form. Mathematics 2023, 11, 1651. [Google Scholar] [CrossRef]
- Tarasov, V.E. Scale-invariant general fractional calculus: Mellin convolution operators. Fractal Fract. 2023, 7, 481. [Google Scholar] [CrossRef]
- Tarasov, V.E. Parametric general fractional calculus: Nonlocal operators acting on function with respect to another function. Comput. Appl. Math. 2024, 43, 183. [Google Scholar] [CrossRef]
- Al-Refai, M.; Fernandez, A. Generalising the fractional calculus with Sonine kernels via conjugations. J. Comput. Appl. Math. 2023, 427, 115159. [Google Scholar] [CrossRef]
- Fernandez, A. Mikusiski’s operational calculus for general conjugated fractional derivatives. Bol. Soc. Mat. Mex. 2023, 29, 25. [Google Scholar] [CrossRef]
- Fernandez, A. Abstract algebraic construction in fractional calculus: Parametrised families with semigroup properties. Complex Anal. Oper. Theory 2024, 18, 50. [Google Scholar] [CrossRef]
- Tarasov, V.E. General fractional dynamics. Mathematics 2021, 9, 1464. [Google Scholar] [CrossRef]
- Tarasov, V.E. General non-Markovian quantum dynamics. Entropy 2021, 23, 1006. [Google Scholar] [CrossRef] [PubMed]
- Tarasov, V.E. General non-local continuum mechanics: Derivation of balance equations. Mathematics 2022, 10, 1427. [Google Scholar] [CrossRef]
- Tarasov, V.E. General non-local electrodynamics: Equations and non-local effects. Ann. Phys. 2022, 445, 169082. [Google Scholar] [CrossRef]
- Tarasov, V.E. Nonlocal classical theory of gravity: Massiveness of nonlocality and mass shielding by nonlocality. Eur. Phys. J. Plus 2022, 137, 1336. [Google Scholar] [CrossRef]
- Tarasov, V.E. Nonlocal statistical mechanics: General fractional Liouville equations and their solutions. Phys. A Stat. Mech. Its Appl. 2023, 609, 128366. [Google Scholar] [CrossRef]
- Tarasov, V.E. General fractional Noether theorem and non-holonomic action principle. Mathematics 2023, 11, 4400. [Google Scholar] [CrossRef]
- Tarasov, V.E. General fractional classical mechanics: Action principle, Euler-Lagrange equations and Noether theorem. Phys. D Nonlinear Phenom. 2024, 457, 133975. [Google Scholar] [CrossRef]
- Atanackovic, T.M.; Pilipovic, S. Zener model with general fractional calculus: Thermodynamical restrictions. Fractal Fract. 2022, 6, 617. [Google Scholar] [CrossRef]
- Miskovic-Stankovic, V.; Janev, M.; Atanackovic, T.M. Two compartmental fractional derivative model with general fractional derivative. J. Pharmacokinet. Pharmacodyn. 2023, 50, 79–87. [Google Scholar] [CrossRef]
- Miskovic-Stankovic, V.; Atanackovic, T.M. On a system of equations with general fractional derivatives arising in diffusion theory. Fractal Fract. 2023, 7, 518. [Google Scholar] [CrossRef]
- Kochubei, A.N. General fractional calculus, evolution equations and renewal processes. Integral Equations Oper. Theory 2011, 71, 583–600. [Google Scholar] [CrossRef]
- Kochubei, A.N. General fractional calculus. Chapter 5. In Handbook of Fractional Calculus with Applications. Volume 1. Basic Theory; Kochubei, A., Luchko, Y., Eds.; Series edited by J.A. Tenreiro Machado; De Gruyter: Berlin, Germany; Boston, MA, USA, 2019; pp. 111–126. [Google Scholar] [CrossRef]
- Kochubei, A.N. Equations with general fractional time derivatives. Cauchy problem. Chapter 11. In Handbook of Fractional Calculus with Applications. Volume 2. Fractional Differential Equations; Kochubei, A., Luchko, Y., Eds.; Series edited by J.A. Tenreiro Machado; De Gruyter: Berlin, Germany; Boston, MA, USA, 2019; pp. 223–234. [Google Scholar] [CrossRef]
- Samko, S.G.; Cardoso, R.P. Integral equations of the first kind of Sonine type. Int. J. Math. Math. Sci. 2003, 57, 3609–3632. Available online: https://www.hindawi.com/journals/ijmms/2003/238394/ (accessed on 20 July 2024). [CrossRef]
- Samko, S.G.; Cardoso, R.P. Sonine integral equations of the first kind in Ly(0; b). Fract. Calc. Appl. Anal. 2003, 6, 235–258. [Google Scholar]
- Toaldo, B. Convolution-type derivatives, hitting times of subordinators and time-changed C0-semigroups. Potential Anal. 2015, 42, 115–140. [Google Scholar] [CrossRef]
- Luchko, Y.; Yamamoto, M. General time-fractional diffusion equation: Some uniqueness and existence results for the initial-boundary-value problems. Fract. Calc. Appl. Anal. 2016, 19, 675–695. [Google Scholar] [CrossRef]
- Luchko, Y.; Yamamoto, M. The general fractional derivative and related fractional differential equations. Mathematics 2020, 8, 2115. [Google Scholar] [CrossRef]
- Sin, C.-S. Well-posedness of general Caputo-type fractional differential equations. Fract. Calc. Appl. Anal. 2018, 21, 819–832. [Google Scholar] [CrossRef]
- Ascione, G. Abstract Cauchy problems for the generalized fractional calculus. Nonlinear Anal. 2021, 209, 112339. [Google Scholar] [CrossRef]
- Hanyga, A. A comment on a controversial issue: A generalized fractional derivative cannot have a regular kernel. Fract. Calc. Appl. Anal. 2020, 23, 211–223. [Google Scholar] [CrossRef]
- Giusti, A. General fractional calculus and Prabhakar’s theory. Commun. Nonlinear Sci. Numer. Simul. 2020, 83, 105114. [Google Scholar] [CrossRef]
- Bazhlekova, E. Estimates for a general fractional relaxation equation and application to an inverse source problem. Math. Methods Appl. Sci. 2018, 41, 9018–9026. [Google Scholar] [CrossRef]
- Bazhlekova, E.; Bazhlekov, I. Identification of a space-dependent source term in a nonlocal problem for the general time-fractional diffusion equation. J. Comput. Appl. Math. 2021, 386, 113213. [Google Scholar] [CrossRef]
- Kochubei, A.N.; Kondratiev, Y.G. Fractional kinetic hierarchies and intermittency. Kinetic and related models. Am. Inst. Math. Sci. 2017, 10, 725–740. [Google Scholar] [CrossRef]
- Kochubei, A.N.; Kondratiev, Y.G. Growth equation of the general fractional calculus. Mathematics 2019, 7, 615. [Google Scholar] [CrossRef]
- Kochubei, A.N.; Kondratiev, Y.G.; da Silva, J.L. On fractional heat equation. Fract. Calc. Appl. Anal. 2021, 24, 73–87. [Google Scholar] [CrossRef]
- Kondratiev, Y.; da Silva, J. Cesaro limits for fractional dynamics. Fractal Fract. 2021, 5, 133. [Google Scholar] [CrossRef]
- Kinash, N.; Janno, J. Inverse problems for a generalized subdiffusion equation with final over determination. Math. Model. Anal. 2019, 24, 236–262. [Google Scholar] [CrossRef]
- Kinash, N.; Janno, J. An inverse problem for a generalized fractional derivative with an application in reconstruction of time- and space-dependent sources in fractional diffusion and wave equations. Mathematics 2019, 7, 1138. [Google Scholar] [CrossRef]
- Janno, J.; Kasemets, K.; Kinash, N. Inverse problem to identify a space-dependent diffusivity coefficient in a generalized subdiffusion equation from final data. Proc. Est. Acad. Sci. 2022, 71, 3–15. [Google Scholar] [CrossRef]
- Janno, J. Inverse problems for a generalized fractional diffusion equation with unknown history. arXiv 2024, arXiv:2402.00482. [Google Scholar] [CrossRef]
- Gorska, K.; Horzel, A. Subordination and memory dependent kinetics in diffusion and relaxation phenomena. Fract. Calc. Appl. Anal. 2024, 26, 480–512. [Google Scholar] [CrossRef]
- Tarasova, V.V.; Tarasov, V.E. Fractional dynamics of natural growth and memory effect in economics. Eur. Res. 2016, 12, 30–37. [Google Scholar] [CrossRef]
- Tarasova, V.V.; Tarasov, V.E. Economic model of natural growth with dynamic memory. Actual Probl. Humanit. Nat. Sci. 2017, 4, 51–58. [Google Scholar]
- Tarasov, V.E.; Tarasova, V.V. Time-dependent fractional dynamics with memory in quantum and economic physics. Ann. Phys. 2017, 383, 579–599. [Google Scholar] [CrossRef]
- Tarasova, V.V.; Tarasov, V.E. Dynamic intersectoral models with power-law memory. Commun. Nonlinear Sci. Numer. Simul. 2018, 54, 100–117. [Google Scholar] [CrossRef]
- Tarasov, V.E. Fractional econophysics: Market price dynamics with memory effects. Phys. A Stat. Mech. Its Appl. 2020, 557, 124865. [Google Scholar] [CrossRef]
- Tarasov, V.E. Nonlinear growth model with long memory: Generalization of Haavelmo model. Nonlinear Dyn. 2021, 104, 4413–4425. [Google Scholar] [CrossRef]
- Erdelyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Higher Transcendental Functions; Volume II. (Bateman Manuscript Project); McGraw-Hill: New York, NY, USA, 1953. [Google Scholar]
- Gorenflo, R.; Kilbas, A.A.; Mainardi, F.; Rogosin, S.V. Mittag-Leffler Functions, Related Topics and Applications; Springer: Berlin/Heidelberg, Germany, 2014; 443p. [Google Scholar] [CrossRef]
- Gorenflo, R.; Kilbas, A.A.; Mainardi, F.; Rogosin, S.V. Mittag-Leffler Functions, Related Topics and Applications, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2020; 443p. [Google Scholar] [CrossRef]
- Tarasov, V.E. Caputo-Fabrizio operator in terms of integer derivatives: Memory or distributed lag? Comput. Appl. Math. 2019, 38, 113. [Google Scholar] [CrossRef]
- Tarasov, V.E.; Tarasova, V.V. Logistic equation with continuously distributed lag and application in economics. Nonlinear Dyn. 2019, 97, 1313–1328. [Google Scholar] [CrossRef]
- Hadid, S.B.; Luchko, Y. An operational method for solving fractional differential equations of an arbitrary real order. Panam. Math. J. 1996, 6, 57–73. [Google Scholar]
- Tarasov, V.E. Quantum Mechanics of Non-Hamiltonian and Dissipative Systems; Elsevier: Amsterdam, The Netherlands; London, UK, 2008; 540p, ISBN 9780444530912. [Google Scholar]
- Chruscinski, D. Dynamical maps beyond Markovian regime. Phys. Rep. 2022, 992, 1–5. [Google Scholar] [CrossRef]
- Arnold, V.I. Ordinary Differential Equations, 3rd ed.; Nauka: Moscow, Russia, 1984. (In Russian) [Google Scholar]
- Arnold, V.I. Ordinary Differential Equations, 3rd ed.; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1992; ISBN 3-540-54813-0. [Google Scholar]
- Tarasov, V.E. Quantum dissipation from power-law memory. Ann. Phys. 2012, 327, 1719–1729. [Google Scholar] [CrossRef]
- Peng, J.; Li, K. A note on property of the Mittag-Leffler function. J. Math. Anal. Appl. 2010, 370, 635–638. [Google Scholar] [CrossRef]
- Elagan, S.K. On the invalidity of semigroup property for the Mittag-Leffler function with two parameters. J. Egypt. Math. Soc. 2016, 24, 200–203. [Google Scholar] [CrossRef]
- Sadeghi, A.; Cardoso, J.R. Some notes on properties of the matrix Mittag-Leffler function. Appl. Math. Comput. 2018, 338, 733–738. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarasov, V.E. General Fractional Economic Dynamics with Memory. Mathematics 2024, 12, 2411. https://doi.org/10.3390/math12152411
Tarasov VE. General Fractional Economic Dynamics with Memory. Mathematics. 2024; 12(15):2411. https://doi.org/10.3390/math12152411
Chicago/Turabian StyleTarasov, Vasily E. 2024. "General Fractional Economic Dynamics with Memory" Mathematics 12, no. 15: 2411. https://doi.org/10.3390/math12152411
APA StyleTarasov, V. E. (2024). General Fractional Economic Dynamics with Memory. Mathematics, 12(15), 2411. https://doi.org/10.3390/math12152411