A Dynamic Hierarchical Improved Tyrannosaurus Optimization Algorithm with Hybrid Topology Structure
Abstract
:1. Introduction
2. Tyrannosaurus Optimization Algorithm
2.1. Initialization
2.2. Hunting and Chasing
2.3. Selection
3. Dynamic Hierarchical Tyrannosaurus Optimization Algorithm
3.1. Initialization of Chaotic Opposition-Based Learning
3.2. Dynamic Hybrid Bi-Population Strategy
3.3. Adaptive Running Rate
3.4. Improvement of Hunting ‘Failure’
3.5. Cellular Ring Topology
3.6. DHTROA Algorithm Implementation Steps
3.7. Time Complexity Statistics
4. Experimental Results and Discussion
4.1. Experimental Design
4.2. Results and Analysis
4.3. Statistical Test
4.3.1. Wilcoxon Rank Sum Test
4.3.2. Friedman Test
5. Engineering Optimization Problems
5.1. Three-Bar Truss Design Problem
5.2. Tension/Compression Spring Design
5.3. Pressure Vessel Design Problem
5.4. Welded Beam Design Problem
5.5. Cantilever Beam Design Problem
5.6. Speed Reducer Design Problem
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, S.; Jia, H.; Abualigah, L.; Liu, Q.; Zheng, R. An improved hybrid aquila optimizer and harris hawks algorithm for solving industrial engineering optimization problems. Processes 2021, 9, 1551. [Google Scholar] [CrossRef]
- Kalananda, V.K.R.A.; Komanapalli, V.L.N. A combinatorial social group whale optimization algorithm for numerical and engineering optimization problems. Appl. Soft Comput. 2020, 99, 106903. [Google Scholar] [CrossRef]
- Kamboj, V.K.; Nandi, A.; Bhadoria, A.; Sehgal, S. An intensify Harris Hawks optimizer for numerical and engineering optimization problems. Appl. Soft Comput. 2019, 89, 106018. [Google Scholar] [CrossRef]
- Kaveh, M.; Mesgari, M.S. Application of meta-heuristic algorithms for training neural networks and deep learning architectures: A comprehensive review. Neural Process. Lett. 2022, 55, 4519–4622. [Google Scholar] [CrossRef] [PubMed]
- Afzal, A.; Buradi, A.; Jilte, R.; Shaik, S.; Kaladgi, A.R.; Arıcı, M.; Lee, C.T.; Nižetić, S. Optimizing the thermal performance of solar energy devices using meta-heuristic algorithms: A critical review. Renew. Sustain. Energy Rev. 2023, 173, 112903. [Google Scholar] [CrossRef]
- Sallam, K.M.; Agrawal, P.; Hadi, A.A.; Mohamed, A.K. Evaluating the performance of meta-heuristic algorithms on CEC 2021 benchmark problems. Neural Comput. Appl. 2022, 35, 1493–1517. [Google Scholar]
- Qian, L.; Chen, Z.; Huang, Y.; Stanford, R.J. Employing categorical boosting (CatBoost) and meta-heuristic algorithms for predicting the urban gas consumption. Urban Clim. 2023, 51, 101647. [Google Scholar] [CrossRef]
- Beiranvand, B.; Ashofteh, P.S. A systematic review of optimization of dams reservoir operation using the me-ta-heuristic algorithms. Water Resour. Manag. 2023, 37, 3457–3526. [Google Scholar] [CrossRef]
- Seyedmohammadi, J.; Zeinadini, A.; Navidi, M.N.; McDowell, R.W. A new robust hybrid model based on support vector machine and firefly meta-heuristic algorithm to predict pistachio yields and select effective soil variables. Ecol. Inform. 2023, 74, 102002. [Google Scholar] [CrossRef]
- Duan, H.; Qiao, P. Pigeon-inspired optimization: a new swarm intelligence optimizer for air robot path plan-ning. Int. J. Intell. Comput. Cybern. 2014, 7, 24–37. [Google Scholar] [CrossRef]
- Zhong, C.; Li, G.; Meng, Z. Beluga whale optimization: A novel nature-inspired metaheuristic algo-rithm. Knowl. Based Syst. 2022, 251, 109215. [Google Scholar] [CrossRef]
- Jia, H.; Rao, H.; Wen, C.; Mirjalili, S. Crayfish optimization algorithm. Artif. Intell. Rev. 2023, 56, 1919–1979. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Arora, S.; Singh, S. Butterfly optimization algorithm: a novel approach for global optimization. Soft Comput. 2018, 23, 715–734. [Google Scholar] [CrossRef]
- Chopra, N.; Ansari, M.M. Golden jackal optimization: A novel nature-inspired optimizer for engineering applica-tions. Expert Syst. Appl. 2022, 198, 116924. [Google Scholar] [CrossRef]
- Seyyedabbasi, A.; Kiani, F. Sand Cat swarm optimization: A nature-inspired algorithm to solve global optimization problems. Eng. Comput. 2022, 39, 2627–2651. [Google Scholar] [CrossRef]
- Wang, G.-Y.; Cheng, D.-D.; Xia, D.-Y.; Jiang, H.-H. Swarm intelligence research: From bio-inspired single-population swarm intelligence to human-machine hybrid swarm intelligence. Mach. Intell. Res. 2023, 20, 121–144. [Google Scholar] [CrossRef]
- Rahimi, I.; Gandomi, A.H.; Chen, F.; Mezura-Montes, E. A review on constraint handling techniques for popula-tion-based algorithms: From single-objective to multi-objective optimization. Arch. Comput. Methods Eng. 2023, 30, 2181–2209. [Google Scholar] [CrossRef]
- Tang, J.; Liu, G.; Pan, Q. A review on representative swarm intelligence algorithms for solving optimization problems: Applications and trends. IEEE/CAA J. Autom. Sin. 2021, 8, 1627–1643. [Google Scholar] [CrossRef]
- Zhuang, X.; Wang, W.; Su, Y.; Yan, B.; Li, Y.; Li, L.; Hao, Y. Multi-objective optimization of reservoir development strategy with hybrid artificial intelligence method. Expert Syst. Appl. 2024, 241, 122707. [Google Scholar] [CrossRef]
- Shaamala, A.; Yigitcanlar, T.; Nili, A.; Nyandega, D. Algorithmic Green Infrastructure Optimisation: Review of Artificial Intelligence Driven Approaches for Tackling Climate Change. Sustain. Cities Soc. 2024, 101, 105182. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhu, H.; Xie, M. Differential privacy may have a potential optimization effect on some swarm intelligence algorithms besides privacy-preserving. Inf. Sci. 2024, 654, 119870. [Google Scholar] [CrossRef]
- Zhu, F.; Li, G.; Tang, H.; Li, Y.; Lv, X.; Wang, X. Dung beetle optimization algorithm based on quantum computing and multi-strategy fusion for solving engineering problems. Expert Syst. Appl. 2024, 236, 121219. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, R. A multi-strategy enhanced dung beetle optimization algorithm and its application in engineering. Preprints 2024, 2024020368. [Google Scholar] [CrossRef]
- Wang, H.; Tang, J.; Pan, Q. MSI-HHO: Multi-Strategy Improved HHO Algorithm for Global Optimiza-tion. Mathematics 2024, 12, 415. [Google Scholar] [CrossRef]
- Qin, S.; Zeng, H.; Sun, W.; Wu, J.; Yang, J. Multi-Strategy Improved Particle Swarm Optimization Algorithm and Gazelle Optimization Algorithm and Application. Electronics 2024, 13, 1580. [Google Scholar] [CrossRef]
- Hu, G.; Wang, J.; Li, M.; Hussien, A.G.; Abbas, M. EJS: Multi-Strategy Enhanced Jellyfish Search Algorithm for Engineering Applications. Mathematics 2023, 11, 851. [Google Scholar] [CrossRef]
- Li, Q.; Shi, H.; Zhao, W.; Ma, C. Enhanced Dung Beetle Optimization Algorithm for Practical Engineering Optimization. Mathematics 2024, 12, 1084. [Google Scholar] [CrossRef]
- Zheng, R.; Hussien, A.G.; Qaddoura, R.; Jia, H.; Abualigah, L.; Wang, S.; Saber, A. A multi-strategy enhanced African vultures optimization algorithm for global optimization problems. J. Comput. Des. Eng. 2023, 10, 329–356. [Google Scholar] [CrossRef]
- Jiang, S.; Shang, J.; Guo, J.; Zhang, Y. Multi-Strategy Improved Flamingo Search Algorithm for Global Optimization. Appl. Sci. 2023, 13, 5612. [Google Scholar] [CrossRef]
- Liu, G.; Guo, Z.; Liu, W.; Cao, B.; Chai, S.; Wang, C. MSHHOTSA: A variant of tunicate swarm algorithm combining multi-strategy mechanism and hybrid Harris optimization. PLoS ONE 2023, 18, e0290117. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Liu, Y.; Chen, H.; Deng, W. A Multi-Strategy Adaptive Particle Swarm Optimization Algorithm for Solving Optimization Problem. Electronics 2023, 12, 491. [Google Scholar] [CrossRef]
- Li, Y.; Liang, X.; Liu, J.; Zhou, H. Solving engineering optimisation problems based on improved balanced optimiser algorithm. Comput. Integr. Manuf. Syst. 2023, 1–34. [Google Scholar] [CrossRef]
- Yao, L.; Yuan, P.; Tsai, C.-Y.; Zhang, T.; Lu, Y.; Ding, S. ESO: An enhanced snake optimizer for real-world engineering problems. Expert Syst. Appl. 2023, 230, 120594. [Google Scholar] [CrossRef]
- Sahu, V.S.D.M.; Samal, P.; Panigrahi, C.K. Tyrannosaurus optimization algorithm: A new nature-inspired meta-heuristic algorithm for solving optimal control problems. e-Prime 2023, 5, 100243. [Google Scholar] [CrossRef]
- Mirjalili, S. SCA: A Sine Cosine Algorithm for solving optimization problems. Knowl. Based Syst. 2016, 96, 120–133. [Google Scholar] [CrossRef]
- Tutueva, A.V.; Nepomuceno, E.G.; Karimov, A.I.; Andreev, V.S.; Butusov, D.N. Adaptive chaotic maps and their application to pseudo-random numbers generation. Chaos Solitons Fractals 2020, 133, 109615. [Google Scholar] [CrossRef]
- Tizhoosh, H.R. Opposition-based learning: a new scheme for machine intelligence. In Proceedings of the International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC′06), Vienna, Austria, 28–30 November 2005; Volume 1, pp. 695–701. [Google Scholar]
- Huang, Y.Y.; Pan, Q.K.; Huang, J.P.; Suganthan, P.N.; Gao, L. An improved iterated greedy algorithm for the dis-tributed assembly permutation flowshop scheduling problem. Comput. Ind. Eng. 2021, 152, 107021. [Google Scholar] [CrossRef]
- Wu, G.; Mallipeddi, R.; Suganthan, P.N. Problem Definitions and Evaluation Criteria for the CEC 2017 Competition on Constrained Real-Parameter Optimization; Technical Report; National University of Defense Technology: Changsha, China; Kyungpook National University: Daegu, Republic of Korea; Nanyang Technological University: Singapore, 2017. [Google Scholar]
- Salgotra, R.; Singh, U.; Saha, S. Improved cuckoo search with better search capabilities for solving CEC2017 benchmark problems. In Proceedings of the 2018 IEEE Congress on Evolutionary Computation (CEC), Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–7. [Google Scholar]
- Kreischer, V.; Magalhães, T.T.; Barbosa, H.J.C.; Krempser, E. Evaluation of bound constraints handling methods in differential evolution using the cec2017 benchmark. In Proceedings of the XIII Brazilian Congress on Computational Intelligence, Rio de Janeiro, Brazil, 30 October–1 November 2017. [Google Scholar]
- Cheng, R.; Li, M.; Tian, Y.; Zhang, X.; Yang, S.; Jin, Y.; Yao, X. Benchmark functions for CEC’2017 competition on evolutionary many-objective optimization. In Proceedings of the 2017 IEEE Congress on Evolutionary Computation (CEC), San Sebastián, Spain, 5–8 June 2017; pp. 1–20. [Google Scholar]
- Wilcoxon, F.; Katti, S.K.; Wilcox, R.A. Critical values and probability levels for the Wilcoxon rank sum test and the Wilcoxon signed rank test. Sel. Tables Math. Stat. 1970, 1, 171–259. [Google Scholar]
- Zimmerman, D.W.; Zumbo, B.D. Relative power of the Wilcoxon test, the Friedman test, and repeated-measures ANOVA on ranks. J. Exp. Educ. 1993, 62, 75–86. [Google Scholar] [CrossRef]
- Yildirim, A.E.; Karci, A. Application of three bar truss problem among engineering design optimization problems using artificial atom algorithm. In Proceedings of the 2018 International Conference on Artificial Intelligence and Data Processing (IDAP), Malatya, Turkey, 28–30 September 2018; pp. 1–5. [Google Scholar]
- Tzanetos, A.; Blondin, M. A qualitative systematic review of metaheuristics applied to tension/compression spring design problem: Current situation, recommendations, and research direction. Eng. Appl. Artif. Intell. 2023, 118, 105521. [Google Scholar] [CrossRef]
- Moss, D.R. Pressure Vessel Design Manual; Elsevier: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Kamil, A.T.; Saleh, H.M.; Abd-Alla, I.H. A multi-swarm structure for particle swarm optimization: Solving the welded beam design problem. J. Physics: Conf. Ser. 2021, 1804, 012012. [Google Scholar] [CrossRef]
- Friswell, M.I.; Adhikari, S. Sensor shape design for piezoelectric cantilever beams to harvest vibration energy. J. Appl. Phys. 2010, 108, 014901. [Google Scholar] [CrossRef]
TROA | PIO | BWO | COA | SCA | WOA | BOA | SCSO | GJO | DHTROA | ||
---|---|---|---|---|---|---|---|---|---|---|---|
F1 | mean | 1.35 × 1011 | 2.25 × 1010 | 5.32 × 1010 | 5.75 × 1010 | 2.11 × 1010 | 3.96 × 1010 | 5.60 × 1010 | 4.08 × 1010 | 2.34 × 1010 | 1.01 × 1010 |
std | 1.67 × 1010 | 3.30 × 1009 | 4.49 × 1009 | 7.75 × 1009 | 3.12 × 1009 | 6.73 × 1009 | 8.71 × 1009 | 5.26 × 1009 | 5.04 × 1009 | 2.23 × 1009 | |
best | 9.25 × 1010 | 1.89 × 1010 | 3.83 × 1010 | 4.02 × 1010 | 1.61 × 1010 | 2.58 × 1010 | 3.43 × 1010 | 3.16 × 1010 | 1.61 × 1010 | 5.76 × 1009 | |
F3 | mean | 5.89 × 1009 | 9.24 × 1004 | 7.99 × 1004 | 8.38 × 1004 | 9.21 × 1004 | 2.31 × 1005 | 8.19 × 1004 | 8.53 × 1004 | 7.28 × 1004 | 6.31 × 1004 |
std | 1.46 × 1010 | 8.04 × 1003 | 5.35 × 1003 | 7.36 × 1003 | 2.14 × 1004 | 4.59 × 1004 | 9.26 × 1003 | 3.90 × 1003 | 7.20 × 1003 | 8.71 × 1003 | |
best | 3.67 × 1005 | 1.14 × 1005 | 8.85 × 1004 | 9.41 × 1004 | 1.60 × 1005 | 3.49 × 1005 | 9.36 × 1004 | 8.67 × 1004 | 8.65 × 1004 | 8.18 × 1004 | |
F4 | mean | 5.35 × 1004 | 2.65 × 1003 | 1.28 × 1004 | 1.60 × 1004 | 3.18 × 1003 | 9.61 × 1003 | 2.14 × 1004 | 9.45 × 1003 | 3.46 × 1003 | 1.71 × 1003 |
std | 1.42 × 1004 | 7.73 × 1002 | 1.58 × 1003 | 2.87 × 1003 | 9.68 × 1002 | 2.64 × 1003 | 3.51 × 1003 | 2.08 × 1003 | 1.57 × 1003 | 5.51 × 1002 | |
best | 2.63 × 1004 | 1.52 × 1003 | 7.91 × 1003 | 9.68 × 1003 | 1.31 × 1003 | 5.37 × 1003 | 1.34 × 1004 | 5.25 × 1003 | 1.60 × 1003 | 8.69 × 1002 | |
F5 | mean | 1.22 × 1003 | 8.73 × 1002 | 9.25 × 1002 | 9.24 × 1002 | 8.23 × 1002 | 9.21 × 1002 | 9.12 × 1002 | 9.12 × 1002 | 8.30 × 1002 | 7.07 × 1002 |
std | 7.13 × 1001 | 4.24 × 1001 | 1.87 × 1001 | 3.12 × 1001 | 2.52 × 1001 | 4.41 × 1001 | 3.05 × 1001 | 2.55 × 1001 | 2.75 × 1001 | 2.56 × 1001 | |
best | 1.03 × 1003 | 7.97 × 1002 | 8.85 × 1002 | 8.52 × 1002 | 7.83 × 1002 | 7.85 × 1002 | 8.45 × 1002 | 8.43 × 1002 | 7.92 × 1002 | 7.56 × 1002 | |
F6 | mean | 7.43 × 1002 | 6.66 × 1002 | 6.90 × 1002 | 6.89 × 1002 | 6.65 × 1002 | 6.85 × 1002 | 6.91 × 1002 | 6.94 × 1002 | 6.72 × 1002 | 6.62 × 1002 |
std | 1.25 × 1001 | 9.23 × 1000 | 5.01 × 1000 | 7.38 × 1000 | 6.43 × 1000 | 9.88 × 1000 | 5.43 × 1000 | 5.08 × 1000 | 5.36 × 1000 | 7.27 × 1000 | |
best | 7.06 × 1002 | 6.52 × 1002 | 6.80 × 1002 | 6.74 × 1002 | 6.49 × 1002 | 6.70 × 1002 | 6.77 × 1002 | 6.84 × 1002 | 6.62 × 1002 | 6.47 × 1002 | |
F7 | mean | 3.54 × 1003 | 1.47 × 1003 | 1.40 × 1003 | 1.43 × 1003 | 1.25 × 1003 | 1.42 × 1003 | 1.41 × 1003 | 1.37 × 1003 | 1.20 × 1003 | 1.15 × 1003 |
std | 3.08 × 1002 | 6.98 × 1001 | 3.32 × 1001 | 4.68 × 1001 | 6.28 × 1001 | 5.99 × 1001 | 3.95 × 1001 | 5.33 × 1001 | 5.05 × 1001 | 4.18 × 1001 | |
best | 2.61 × 1003 | 1.31 × 1003 | 1.30 × 1003 | 1.31 × 1003 | 1.15 × 1003 | 1.15 × 1003 | 1.28 × 1003 | 1.27 × 1003 | 1.12 × 1003 | 1.06 × 1003 | |
F8 | mean | 1.44 × 1003 | 1.15 × 1003 | 1.14 × 1003 | 1.14 × 1003 | 1.10 × 1003 | 1.14 × 1003 | 1.14 × 1003 | 1.15 × 1003 | 1.07 × 1003 | 1.05 × 1003 |
std | 5.66 × 1001 | 2.86 × 1001 | 2.35 × 1001 | 2.02 × 1001 | 2.01 × 1001 | 3.05 × 1001 | 2.05 × 1001 | 1.84 × 1001 | 2.21 × 1001 | 2.36 × 1001 | |
best | 1.32 × 1003 | 1.08 × 1003 | 1.08 × 1003 | 1.10 × 1003 | 1.06 × 1003 | 1.08 × 1003 | 1.10 × 1003 | 1.10 × 1003 | 1.01 × 1003 | 1.01 × 1003 | |
F9 | mean | 4.01 × 1004 | 1.24 × 1004 | 1.13 × 1004 | 1.02 × 1004 | 8.53 × 1003 | 1.25 × 1004 | 1.11 × 1004 | 1.15 × 1004 | 7.53 × 1003 | 7.13 × 1003 |
std | 6.39 × 1003 | 2.25 × 1003 | 1.07 × 1003 | 1.42 × 1003 | 1.16 × 1003 | 2.07 × 1003 | 1.27 × 1003 | 1.48 × 1003 | 1.09 × 1003 | 1.45 × 1003 | |
best | 2.88 × 1004 | 7.74 × 1003 | 9.01 × 1003 | 6.65 × 1003 | 6.73 × 1003 | 9.71 × 1003 | 7.92 × 1003 | 8.43 × 1003 | 5.41 × 1003 | 4.72 × 1003 | |
F10 | mean | 1.09 × 1004 | 9.00 × 1003 | 8.81 × 1003 | 9.01 × 1003 | 8.90 × 1003 | 8.71 × 1003 | 9.17 × 1003 | 8.66 × 1003 | 8.35 × 1003 | 8.30 × 1003 |
std | 5.51 × 1002 | 3.65 × 1002 | 3.30 × 1002 | 3.66 × 1002 | 3.61 × 1002 | 7.59 × 1002 | 4.05 × 1002 | 4.00 × 1002 | 6.46 × 1002 | 5.14 × 1002 | |
best | 9.85 × 1003 | 8.29 × 1003 | 8.28 × 1003 | 7.67 × 1003 | 8.23 × 1003 | 7.00 × 1003 | 8.21 × 1003 | 7.67 × 1003 | 7.81 × 1003 | 7.37 × 1003 | |
F11 | mean | 3.58 × 1006 | 5.11 × 1003 | 8.16 × 1003 | 8.49 × 1003 | 4.07 × 1003 | 1.49 × 1004 | 8.41 × 1003 | 7.29 × 1003 | 4.83 × 1003 | 1.82 × 1003 |
std | 1.73 × 1007 | 9.65 × 1002 | 1.77 × 1003 | 1.93 × 1003 | 9.47 × 1002 | 7.15 × 1003 | 1.58 × 1003 | 1.11 × 1003 | 1.71 × 1003 | 2.71 × 1002 | |
best | 2.02 × 1004 | 3.26 × 1003 | 3.36 × 1003 | 4.55 × 1003 | 2.71 × 1003 | 5.60 × 1003 | 5.85 × 1003 | 5.68 × 1003 | 2.62 × 1003 | 1.50 × 1003 | |
F12 | mean | 3.10 × 1010 | 2.12 × 1009 | 1.13 × 1010 | 1.40 × 1010 | 2.68 × 1009 | 8.36 × 1009 | 1.32 × 1010 | 9.97 × 1009 | 3.05 × 1009 | 4.51 × 1008 |
std | 5.02 × 1009 | 6.24 × 1008 | 2.20 × 1009 | 3.54 × 1009 | 8.80 × 1008 | 2.30 × 1009 | 2.84 × 1009 | 1.82 × 1009 | 1.34 × 1009 | 1.68 × 1008 | |
best | 2.23 × 1010 | 1.17 × 1009 | 6.13 × 1009 | 5.90 × 1009 | 1.06 × 1009 | 4.69 × 1009 | 8.16 × 1009 | 5.46 × 1009 | 1.16 × 1009 | 1.87 × 1008 | |
F13 | mean | 2.99 × 1010 | 6.60 × 1008 | 7.81 × 1009 | 8.32 × 1009 | 1.35 × 1009 | 2.65 × 1009 | 1.36 × 1010 | 6.21 × 1009 | 1.29 × 1009 | 1.14 × 1007 |
std | 1.39 × 1010 | 2.59 × 1008 | 2.18 × 1009 | 4.71 × 1009 | 6.57 × 1008 | 1.72 × 1009 | 6.27 × 1009 | 2.44 × 1009 | 1.18 × 1009 | 1.62 × 1007 | |
best | 3.58 × 1009 | 2.14 × 1008 | 4.97 × 1009 | 1.13 × 1009 | 3.77 × 1008 | 7.81 × 1008 | 2.07 × 1009 | 1.90 × 1009 | 3.78 × 1008 | 6.87 × 1005 | |
F14 | mean | 1.05 × 1008 | 7.05 × 1005 | 4.43 × 1006 | 3.21 × 1006 | 7.05 × 1005 | 6.58 × 1006 | 6.25 × 1006 | 2.22 × 1006 | 1.29 × 1006 | 6.63 × 1004 |
std | 9.63 × 1007 | 4.65 × 1005 | 3.08 × 1006 | 2.50 × 1006 | 5.53 × 1005 | 7.85 × 1006 | 6.20 × 1006 | 1.29 × 1006 | 7.90 × 1005 | 3.54 × 1004 | |
best | 7.77 × 1006 | 6.63 × 1004 | 5.12 × 1005 | 1.57 × 1005 | 1.36 × 1005 | 4.69 × 1005 | 1.28 × 1006 | 2.44 × 1005 | 2.36 × 1005 | 1.58 × 1004 | |
F15 | mean | 8.79 × 1009 | 1.41 × 1008 | 3.11 × 1008 | 9.77 × 1008 | 4.83 × 1007 | 3.54 × 1008 | 6.07 × 1008 | 6.85 × 1007 | 1.64 × 1007 | 1.62 × 1004 |
std | 3.80 × 1009 | 7.03 × 1007 | 1.45 × 1008 | 6.92 × 1008 | 3.18 × 1007 | 3.07 × 1008 | 5.99 × 1008 | 7.93 × 1007 | 3.84 × 1007 | 2.98 × 1004 | |
best | 2.51 × 1009 | 5.21 × 1007 | 5.22 × 1007 | 3.81 × 1007 | 3.31 × 1006 | 7.12 × 1007 | 3.66 × 1007 | 6.98 × 1006 | 1.33 × 1006 | 4.28 × 1003 | |
F16 | mean | 1.01 × 1004 | 4.11 × 1003 | 5.52 × 1003 | 6.20 × 1003 | 3.97 × 1003 | 5.57 × 1003 | 7.86 × 1003 | 5.10 × 1003 | 4.01 × 1003 | 3.69 × 1003 |
std | 2.15 × 1003 | 2.67 × 1002 | 3.88 × 1002 | 8.48 × 1002 | 2.37 × 1002 | 1.12 × 1003 | 1.79 × 1003 | 5.04 × 1002 | 3.30 × 1002 | 2.75 × 1002 | |
best | 5.48 × 1003 | 3.32 × 1003 | 5.02 × 1003 | 4.83 × 1003 | 3.37 × 1003 | 3.79 × 1003 | 5.23 × 1003 | 4.35 × 1003 | 3.36 × 1003 | 3.08 × 1003 | |
F17 | mean | 1.22 × 1005 | 2.78 × 1003 | 3.89 × 1003 | 4.13 × 1003 | 2.91 × 1003 | 3.44 × 1003 | 9.82 × 1003 | 3.43 × 1003 | 2.69 × 1003 | 2.38 × 1003 |
std | 2.67 × 1005 | 2.11 × 1002 | 5.12 × 1002 | 1.38 × 1003 | 1.86 × 1002 | 5.24 × 1002 | 1.02 × 1004 | 3.11 × 1002 | 1.82 × 1002 | 2.21 × 1002 | |
best | 4.48 × 1003 | 2.42 × 1003 | 3.34 × 1003 | 2.68 × 1003 | 2.54 × 1003 | 2.78 × 1003 | 2.75 × 1003 | 2.80 × 1003 | 2.33 × 1003 | 1.97 × 1003 | |
F18 | mean | 9.68 × 1008 | 1.13 × 1007 | 4.31 × 1007 | 5.85 × 1007 | 1.21 × 1007 | 5.61 × 1007 | 6.96 × 1007 | 2.46 × 1007 | 6.84 × 1006 | 1.20 × 1006 |
std | 5.78 × 1008 | 6.41 × 1006 | 2.58 × 1007 | 3.79 × 1007 | 7.29 × 1006 | 8.68 × 1007 | 6.68 × 1007 | 2.15 × 1007 | 6.46 × 1006 | 5.37 × 1005 | |
best | 2.99 × 1008 | 3.32 × 1006 | 3.79 × 1006 | 6.39 × 1006 | 2.17 × 1006 | 1.77 × 1006 | 5.60 × 1006 | 3.11 × 1006 | 1.07 × 1006 | 4.74 × 1005 | |
F19 | mean | 1.02 × 1010 | 2.25 × 1008 | 3.88 × 1008 | 7.79 × 1008 | 1.04 × 1008 | 4.64 × 1008 | 8.41 × 1008 | 2.10 × 1008 | 4.90 × 1007 | 1.19 × 1005 |
std | 4.60 × 1009 | 9.55 × 1007 | 1.88 × 1008 | 3.97 × 1008 | 5.87 × 1007 | 3.74 × 1008 | 6.65 × 1008 | 1.26 × 1008 | 5.36 × 1007 | 2.70 × 1005 | |
best | 3.15 × 1009 | 4.75 × 1007 | 6.71 × 1007 | 1.05 × 1008 | 3.00 × 1007 | 3.63 × 1007 | 6.19 × 1007 | 3.35 × 1007 | 7.81 × 1006 | 3.88 × 1003 | |
F20 | mean | 3.96 × 1002 | 2.97 × 1002 | 3.04 × 1002 | 3.04 × 1002 | 2.87 × 1002 | 3.12 × 1002 | 3.11 × 1002 | 2.98 × 1003 | 2.78 × 1003 | 2.60 × 1002 |
std | 2.76 × 1001 | 1.21 × 1001 | 1.20 × 1001 | 2.10 × 1001 | 1.55 × 1001 | 2.04 × 1001 | 1.09 × 1001 | 2.01 × 1002 | 1.58 × 1002 | 1.64 × 1001 | |
best | 3.34 × 1002 | 2.68 × 1002 | 2.76 × 1002 | 2.42 × 1002 | 2.58 × 1002 | 2.74 × 1002 | 2.83 × 1002 | 2.55 × 1003 | 2.46 × 1003 | 2.29 × 1002 | |
F21 | mean | 2.95 × 1002 | 2.62 × 1002 | 2.74 × 1002 | 2.76 × 1002 | 2.60 × 1002 | 2.73 × 1002 | 2.73 × 1002 | 2.70 × 1003 | 2.61 × 1003 | 2.58 × 1002 |
std | 6.94 × 1002 | 2.06 × 1001 | 2.77 × 1002 | 4.88 × 1002 | 3.60 × 1002 | 6.47 × 1002 | 8.08 × 1002 | 2.82 × 1001 | 2.48 × 1001 | 3.02 × 1001 | |
best | 2.83 × 1002 | 2.57 × 1002 | 2.68 × 1002 | 2.69 × 1002 | 2.53 × 1002 | 2.64 × 1002 | 2.52 × 1002 | 2.65 × 1003 | 2.56 × 1003 | 2.50 × 1002 | |
F22 | mean | 1.26 × 1004 | 5.59 × 1003 | 8.78 × 1003 | 9.79 × 1003 | 9.70 × 1003 | 9.75 × 1003 | 7.05 × 1003 | 7.90 × 1003 | 6.33 × 1003 | 5.05 × 1003 |
std | 5.65 × 1002 | 2.16 × 1003 | 4.68 × 1002 | 6.67 × 1002 | 1.55 × 1003 | 1.05 × 1003 | 1.15 × 1003 | 8.76 × 1002 | 2.17 × 1003 | 2.67 × 1003 | |
best | 1.22 × 1004 | 3.99 × 1003 | 7.12 × 1003 | 8.23 × 1003 | 4.44 × 1003 | 6.57 × 1003 | 4.95 × 1003 | 5.84 × 1003 | 4.18 × 1003 | 3.13 × 1003 | |
F23 | mean | 4.09 × 1003 | 3.00 × 1003 | 3.34 × 1003 | 3.69 × 1003 | 3.09 × 1003 | 3.36 × 1003 | 3.63 × 1003 | 3.41 × 1003 | 3.15 × 1003 | 3.00 × 1003 |
std | 3.15 × 1002 | 3.89 × 1001 | 4.82 × 1001 | 1.54 × 1002 | 3.36 × 1001 | 1.38 × 1002 | 1.44 × 1002 | 9.86 × 1001 | 4.11 × 1001 | 3.45 × 1001 | |
best | 3.43 × 1003 | 2.93 × 1003 | 3.25 × 1003 | 3.40 × 1003 | 3.03 × 1003 | 3.07 × 1003 | 3.39 × 1003 | 3.24 × 1003 | 3.07 × 1003 | 2.92 × 1003 | |
F24 | mean | 4.61 × 1003 | 3.16 × 1003 | 3.62 × 1003 | 3.87 × 1003 | 3.25 × 1003 | 3.59 × 1003 | 4.07 × 1003 | 3.64 × 1003 | 3.37 × 1003 | 3.16 × 1003 |
std | 3.27 × 1002 | 3.08 × 1001 | 7.95 × 1001 | 1.80 × 1002 | 4.03 × 1001 | 1.67 × 1002 | 2.59 × 1002 | 1.64 × 1002 | 5.28 × 1001 | 3.33 × 1001 | |
best | 3.99 × 1003 | 3.10 × 1003 | 3.47 × 1003 | 3.55 × 1003 | 3.17 × 1003 | 3.21 × 1003 | 3.71 × 1003 | 3.31 × 1003 | 3.29 × 1003 | 3.10 × 1003 | |
F25 | mean | 2.15 × 1004 | 4.73 × 1003 | 4.43 × 1003 | 5.13 × 1003 | 3.57 × 1003 | 4.33 × 1003 | 5.82 × 1003 | 4.39 × 1003 | 3.50 × 1003 | 3.20 × 1003 |
std | 5.08 × 1003 | 4.68 × 1002 | 1.72 × 1002 | 5.82 × 1002 | 1.92 × 1002 | 3.53 × 1002 | 6.22 × 1002 | 4.25 × 1002 | 2.66 × 1002 | 6.24 × 1001 | |
best | 9.84 × 1003 | 4.05 × 1003 | 4.00 × 1003 | 4.11 × 1003 | 3.31 × 1003 | 3.74 × 1003 | 5.01 × 1003 | 3.71 × 1003 | 3.24 × 1003 | 3.11 × 1003 | |
F26 | mean | 1.73 × 1004 | 7.02 × 1003 | 1.12 × 1004 | 1.13 × 1004 | 7.82 × 1003 | 1.00 × 1004 | 1.17 × 1004 | 9.83 × 1003 | 8.23 × 1003 | 6.44 × 1003 |
std | 2.29 × 1003 | 9.64 × 1002 | 5.37 × 1002 | 9.48 × 1002 | 3.97 × 1002 | 9.02 × 1002 | 9.10 × 1002 | 6.19 × 1002 | 6.06 × 1002 | 1.23 × 1003 | |
best | 1.37 × 1004 | 4.57 × 1003 | 9.81 × 1003 | 9.22 × 1003 | 7.19 × 1003 | 7.97 × 1003 | 9.73 × 1003 | 8.41 × 1003 | 7.14 × 1003 | 4.39 × 1003 | |
F27 | mean | 5.46 × 1003 | 3.39 × 1003 | 4.06 × 1003 | 4.64 × 1003 | 3.55 × 1003 | 3.86 × 1003 | 4.38 × 1003 | 4.28 × 1003 | 3.71 × 1003 | 3.28 × 1003 |
std | 6.50 × 1002 | 3.05 × 1001 | 1.48 × 1002 | 4.02 × 1002 | 9.25 × 1001 | 2.84 × 1002 | 3.74 × 1002 | 2.67 × 1002 | 1.31 × 1002 | 2.74 × 1001 | |
best | 4.54 × 1003 | 3.34 × 1003 | 3.66 × 1003 | 3.87 × 1003 | 3.41 × 1003 | 3.47 × 1003 | 3.64 × 1003 | 3.69 × 1003 | 3.51 × 1003 | 3.23 × 1003 | |
F28 | mean | 1.45 × 1004 | 4.52 × 1003 | 6.66 × 1003 | 7.81 × 1003 | 4.54 × 1003 | 5.97 × 1003 | 8.12 × 1003 | 5.93 × 1003 | 4.67 × 1003 | 3.86 × 1003 |
std | 2.23 × 1003 | 3.63 × 1002 | 3.31 × 1002 | 6.54 × 1002 | 3.80 × 1002 | 4.59 × 1002 | 4.56 × 1002 | 4.13 × 1002 | 3.92 × 1002 | 1.69 × 1002 | |
best | 1.12 × 1004 | 3.91 × 1003 | 5.75 × 1003 | 6.11 × 1003 | 3.80 × 1003 | 5.26 × 1003 | 7.43 × 1003 | 5.38 × 1003 | 3.98 × 1003 | 3.60 × 1003 | |
F29 | mean | 1.26 × 1005 | 5.16 × 1003 | 7.73 × 1003 | 7.89 × 1003 | 5.25 × 1003 | 6.40 × 1003 | 1.36 × 1004 | 6.52 × 1003 | 5.24 × 1003 | 4.67 × 1003 |
std | 2.36 × 1005 | 2.84 × 1002 | 8.53 × 1002 | 1.91 × 1003 | 2.60 × 1002 | 1.02 × 1003 | 7.79 × 1003 | 4.65 × 1002 | 2.18 × 1002 | 2.29 × 1002 | |
best | 1.01 × 1004 | 4.58 × 1003 | 6.21 × 1003 | 5.90 × 1003 | 4.81 × 1003 | 5.10 × 1003 | 6.94 × 1003 | 5.62 × 1003 | 4.71 × 1003 | 4.17 × 1003 | |
F30 | mean | 5.08 × 1009 | 1.32 × 1008 | 1.28 × 1009 | 1.78 × 1009 | 2.07 × 1008 | 6.38 × 1008 | 1.75 × 1009 | 5.70 × 1008 | 2.12 × 1008 | 3.30 × 1006 |
std | 2.63 × 1009 | 5.54 × 1007 | 5.41 × 1008 | 1.27 × 1009 | 6.42 × 1007 | 3.79 × 1008 | 1.17 × 1009 | 3.14 × 1008 | 8.82 × 1007 | 2.02 × 1006 | |
best | 1.36 × 1009 | 3.74 × 1007 | 3.93 × 1008 | 1.11 × 1008 | 6.76 × 1007 | 1.36 × 1008 | 2.64 × 1008 | 8.44 × 1007 | 6.36 × 1007 | 8.73 × 1005 |
TROA | PIO | BWO | COA | SCA | WOA | BOA | SCSO | GJO | DHTROA | ||
---|---|---|---|---|---|---|---|---|---|---|---|
F1 | mean | 2.66 × 1011 | 8.97 × 1010 | 1.07 × 1011 | 1.14 × 1011 | 6.74 × 1010 | 8.68 × 1010 | 1.04 × 1011 | 9.63 × 1010 | 6.51 × 1010 | 4.78 × 1010 |
std | 3.19 × 1010 | 1.10 × 1010 | 4.32 × 1009 | 7.27 × 1009 | 8.36 × 1009 | 6.10 × 1009 | 1.08 × 1010 | 5.83 × 1009 | 6.24 × 1009 | 6.62 × 1009 | |
best | 2.04 × 1011 | 6.42 × 1010 | 9.60 × 1010 | 9.02 × 1010 | 5.11 × 1010 | 7.55 × 1010 | 8.23 × 1010 | 7.64 × 1010 | 5.13 × 1010 | 3.51 × 1010 | |
F3 | mean | 2.75 × 1011 | 2.51 × 1005 | 2.46 × 1005 | 2.07 × 1005 | 2.19 × 1005 | 3.79 × 1005 | 3.67 × 1005 | 1.84 × 1005 | 1.60 × 1005 | 1.58 × 1005 |
std | 8.86 × 1011 | 3.69 × 1004 | 3.37 × 1004 | 2.63 × 1004 | 4.87 × 1004 | 1.25 × 1005 | 2.21 × 1005 | 1.78 × 1004 | 1.45 × 1004 | 1.93 × 1004 | |
best | 3.52 × 1005 | 1.59 × 1005 | 1.87 × 1005 | 1.69 × 1005 | 1.39 × 1005 | 1.90 × 1005 | 1.68 × 1005 | 1.52 × 1005 | 1.34 × 1005 | 1.16 × 1005 | |
F4 | mean | 1.23 × 1005 | 1.41 × 1004 | 3.49 × 1004 | 3.97 × 1004 | 1.51 × 1004 | 2.72 × 1004 | 4.06 × 1004 | 2.42 × 1004 | 1.32 × 1004 | 8.04 × 1003 |
std | 2.36 × 1004 | 4.29 × 1003 | 2.87 × 1003 | 5.60 × 1003 | 3.66 × 1003 | 6.28 × 1003 | 5.48 × 1003 | 3.28 × 1003 | 2.60 × 1003 | 1.80 × 1003 | |
best | 6.13 × 1004 | 7.28 × 1003 | 2.72 × 1004 | 2.87 × 1004 | 7.23 × 1003 | 1.25 × 1004 | 2.73 × 1004 | 1.68 × 1004 | 8.71 × 1003 | 4.21 × 1003 | |
F5 | mean | 1.74 × 1003 | 1.25 × 1003 | 1.20 × 1003 | 1.21 × 1003 | 1.13 × 1003 | 1.21 × 1003 | 1.19 × 1003 | 1.19 × 1003 | 1.10 × 1003 | 1.08 × 1003 |
std | 9.19 × 1001 | 4.26 × 1001 | 1.40 × 1001 | 3.36 × 1001 | 3.61 × 1001 | 4.13 × 1001 | 2.43 × 1001 | 2.44 × 1001 | 2.56 × 1001 | 3.06 × 1001 | |
best | 1.53 × 1003 | 1.16 × 1003 | 1.17 × 1003 | 1.12 × 1003 | 1.06 × 1003 | 1.13 × 1003 | 1.12 × 1003 | 1.12 × 1003 | 1.03 × 1003 | 1.02 × 1003 | |
F6 | mean | 7.56 × 1002 | 6.93 × 1002 | 7.03 × 1002 | 7.03 × 1002 | 6.85 × 1002 | 7.07 × 1002 | 7.04 × 1002 | 7.05 × 1002 | 6.91 × 1002 | 6.82 × 1002 |
std | 1.06 × 1001 | 8.55 × 1000 | 3.65 × 1000 | 3.38 × 1000 | 5.60 × 1000 | 6.75 × 1000 | 6.23 × 1000 | 5.49 × 1000 | 6.12 × 1000 | 5.13 × 1000 | |
best | 7.35 × 1002 | 6.80 × 1002 | 6.96 × 1002 | 6.95 × 1002 | 6.75 × 1002 | 6.94 × 1002 | 6.88 × 1002 | 6.92 × 1002 | 6.77 × 1002 | 6.73 × 1002 | |
F7 | mean | 6.15 × 1003 | 2.13 × 1003 | 1.98 × 1003 | 2.06 × 1003 | 1.90 × 1003 | 2.02 × 1003 | 2.01 × 1003 | 1.98 × 1003 | 1.71 × 1003 | 1.69 × 1003 |
std | 4.58 × 1002 | 6.68 × 1001 | 5.55 × 1001 | 5.06 × 1001 | 1.10 × 1002 | 8.79 × 1001 | 5.33 × 1001 | 7.01 × 1001 | 8.27 × 1001 | 1.04 × 1002 | |
best | 5.17 × 1003 | 2.00 × 1003 | 1.83 × 1003 | 1.96 × 1003 | 1.70 × 1003 | 1.75 × 1003 | 1.90 × 1003 | 1.83 × 1003 | 1.55 × 1003 | 1.52 × 1003 | |
F8 | mean | 2.05 × 1003 | 1.57 × 1003 | 1.51 × 1003 | 1.50 × 1003 | 1.45 × 1003 | 1.50 × 1003 | 1.51 × 1003 | 1.52 × 1003 | 1.42 × 1003 | 1.40 × 1003 |
std | 8.99 × 1001 | 3.98 × 1001 | 1.77 × 1001 | 2.53 × 1001 | 3.14 × 1001 | 4.52 × 1001 | 2.30 × 1001 | 2.72 × 1001 | 2.94 × 1001 | 3.52 × 1001 | |
best | 1.83 × 1003 | 1.48 × 1003 | 1.48 × 1003 | 1.45 × 1003 | 1.39 × 1003 | 1.39 × 1003 | 1.47 × 1003 | 1.47 × 1003 | 1.34 × 1003 | 1.29 × 1003 | |
F9 | mean | 1.11 × 1005 | 4.30 × 1004 | 3.86 × 1004 | 3.79 × 1004 | 3.35 × 1004 | 4.06 × 1004 | 3.85 × 1004 | 3.96 × 1004 | 3.14 × 1004 | 2.98 × 1004 |
std | 1.23 × 1004 | 7.48 × 1003 | 2.36 × 1003 | 3.16 × 1003 | 5.85 × 1003 | 4.81 × 1003 | 3.62 × 1003 | 3.49 × 1003 | 3.15 × 1003 | 4.16 × 1003 | |
best | 9.07 × 1004 | 3.02 × 1004 | 3.38 × 1004 | 3.19 × 1004 | 1.92 × 1004 | 3.05 × 1004 | 3.12 × 1004 | 2.98 × 1004 | 2.56 × 1004 | 1.10 × 1004 | |
F10 | mean | 1.83 × 1004 | 1.55 × 1004 | 1.50 × 1004 | 1.53 × 1004 | 1.54 × 1004 | 1.52 × 1004 | 1.57 × 1004 | 1.53 × 1004 | 1.49 × 1004 | 1.47 × 1004 |
std | 7.42 × 1002 | 4.25 × 1002 | 3.81 × 1002 | 4.44 × 1002 | 4.54 × 1002 | 6.16 × 1002 | 4.72 × 1002 | 7.32 × 1002 | 6.55 × 1002 | 5.04 × 1002 | |
best | 1.65 × 1004 | 1.44 × 1004 | 1.40 × 1004 | 1.40 × 1004 | 1.44 × 1004 | 1.38 × 1004 | 1.44 × 1004 | 1.31 × 1004 | 1.34 × 1004 | 1.31 × 1004 | |
F11 | mean | 3.33 × 1006 | 1.53 × 1004 | 2.24 × 1004 | 2.64 × 1004 | 1.25 × 1004 | 2.21 × 1004 | 2.56 × 1004 | 2.11 × 1004 | 1.44 × 1004 | 6.81 × 1003 |
std | 1.09 × 1007 | 3.15 × 1003 | 2.61 × 1003 | 2.86 × 1003 | 2.32 × 1003 | 3.54 × 1003 | 2.10 × 1003 | 2.02 × 1003 | 3.20 × 1003 | 1.34 × 1003 | |
best | 5.79 × 1004 | 9.38 × 1003 | 1.42 × 1004 | 1.83 × 1004 | 8.12 × 1003 | 1.47 × 1004 | 1.88 × 1004 | 1.64 × 1004 | 7.62 × 1003 | 5.11 × 1003 | |
F12 | mean | 1.46 × 1011 | 1.40 × 1010 | 6.12 × 1010 | 8.79 × 1010 | 2.31 × 1010 | 5.94 × 1010 | 7.89 × 1010 | 6.26 × 1010 | 2.67 × 1010 | 1.16 × 1010 |
std | 2.93 × 1010 | 3.37 × 1009 | 1.15 × 1010 | 1.62 × 1010 | 5.58 × 1009 | 9.59 × 1009 | 1.73 × 1010 | 8.59 × 1009 | 7.00 × 1009 | 3.71 × 1009 | |
best | 7.48 × 1010 | 8.79 × 1009 | 3.80 × 1010 | 4.16 × 1010 | 1.33 × 1010 | 3.81 × 1010 | 3.83 × 1010 | 4.67 × 1010 | 1.34 × 1010 | 5.36 × 1009 | |
F13 | mean | 9.80 × 1010 | 4.32 × 1009 | 3.51 × 1010 | 5.15 × 1010 | 6.19 × 1009 | 2.65 × 1010 | 4.47 × 1010 | 2.96 × 1010 | 7.69 × 1009 | 9.11 × 1008 |
std | 2.05 × 1010 | 1.22 × 1009 | 8.82 × 1009 | 1.58 × 1010 | 2.40 × 1009 | 9.84 × 1009 | 1.77 × 1010 | 8.40 × 1009 | 4.13 × 1009 | 5.76 × 1008 | |
best | 6.79 × 1010 | 2.07 × 1009 | 1.41 × 1010 | 2.29 × 1010 | 3.02 × 1009 | 6.55 × 1009 | 1.16 × 1010 | 1.13 × 1010 | 2.35 × 1009 | 2.73 × 1008 | |
F14 | mean | 5.45 × 1008 | 4.70 × 1006 | 6.41 × 1007 | 1.19 × 1008 | 7.89 × 1006 | 3.55 × 1007 | 1.77 × 1008 | 4.90 × 1007 | 1.06 × 1007 | 1.52 × 1006 |
std | 2.69 × 1008 | 2.42 × 1006 | 2.89 × 1007 | 8.16 × 1007 | 3.48 × 1006 | 2.73 × 1007 | 1.29 × 1008 | 3.53 × 1007 | 9.81 × 1006 | 8.66 × 1005 | |
best | 1.42 × 1008 | 1.56 × 1006 | 1.86 × 1007 | 2.16 × 1007 | 2.79 × 1006 | 1.27 × 1006 | 1.79 × 1007 | 2.37 × 1006 | 2.03 × 1006 | 2.13 × 1005 | |
F15 | mean | 3.40 × 1010 | 1.48 × 1009 | 6.93 × 1009 | 1.09 × 1010 | 1.18 × 1009 | 3.86 × 1009 | 8.48 × 1009 | 3.25 × 1009 | 1.47 × 1009 | 1.49 × 1007 |
std | 1.00 × 1010 | 6.72 × 1008 | 1.71 × 1009 | 3.91 × 1009 | 5.01 × 1008 | 1.65 × 1009 | 2.99 × 1009 | 1.19 × 1009 | 1.35 × 1009 | 1.59 × 1007 | |
best | 1.88 × 1010 | 5.38 × 1008 | 4.24 × 1009 | 2.71 × 1009 | 3.15 × 1008 | 7.33 × 1008 | 2.53 × 1009 | 1.73 × 1009 | 3.05 × 1008 | 1.03 × 1006 | |
F16 | mean | 1.54 × 1004 | 6.37 × 1003 | 9.25 × 1003 | 1.07 × 1004 | 6.35 × 1003 | 8.33 × 1003 | 1.08 × 1004 | 7.86 × 1003 | 5.84 × 1003 | 5.79 × 1003 |
std | 2.45 × 1003 | 3.51 × 1002 | 9.60 × 1002 | 1.66 × 1003 | 4.13 × 1002 | 1.36 × 1003 | 1.61 × 1003 | 1.09 × 1003 | 6.49 × 1002 | 4.71 × 1002 | |
best | 1.15 × 1004 | 5.64 × 1003 | 7.14 × 1003 | 7.46 × 1003 | 5.45 × 1003 | 6.16 × 1003 | 7.53 × 1003 | 6.48 × 1003 | 4.70 × 1003 | 4.53 × 1003 | |
F17 | mean | 3.34 × 1006 | 6.01 × 1003 | 7.65 × 1003 | 1.11 × 1004 | 5.18 × 1003 | 7.40 × 1003 | 1.79 × 1004 | 7.04 × 1003 | 4.48 × 1003 | 4.22 × 1003 |
std | 3.41 × 1006 | 5.13 × 1002 | 1.44 × 1003 | 6.32 × 1003 | 4.63 × 1002 | 2.23 × 1003 | 9.04 × 1003 | 1.25 × 1003 | 4.60 × 1002 | 3.78 × 1002 | |
best | 7.88 × 1004 | 4.55 × 1003 | 5.02 × 1003 | 4.70 × 1003 | 4.20 × 1003 | 4.44 × 1003 | 6.72 × 1003 | 5.34 × 1003 | 3.58 × 1003 | 3.51 × 1003 | |
F18 | mean | 1.51 × 1009 | 5.53 × 1007 | 1.49 × 1008 | 2.50 × 1008 | 5.87 × 1007 | 1.88 × 1008 | 1.77 × 1008 | 1.05 × 1008 | 3.70 × 1007 | 7.37 × 1006 |
std | 7.58 × 1008 | 2.59 × 1007 | 5.06 × 1007 | 1.26 × 1008 | 3.39 × 1007 | 1.34 × 1008 | 8.11 × 1007 | 4.12 × 1007 | 2.53 × 1007 | 4.57 × 1006 | |
best | 3.28 × 1008 | 1.52 × 1007 | 1.95 × 1007 | 4.77 × 1007 | 8.37 × 1006 | 1.12 × 1007 | 4.83 × 1007 | 3.77 × 1007 | 6.16 × 1006 | 1.89 × 1006 | |
F19 | mean | 1.45 × 1010 | 6.66 × 1008 | 3.51 × 1009 | 3.76 × 1009 | 8.42 × 1008 | 2.44 × 1009 | 4.55 × 1009 | 2.85 × 1009 | 7.03 × 1008 | 9.96 × 1006 |
std | 4.20 × 1009 | 2.46 × 1008 | 6.67 × 1008 | 1.54 × 1009 | 4.54 × 1008 | 1.76 × 1009 | 1.81 × 1009 | 8.54 × 1008 | 6.28 × 1008 | 7.38 × 1006 | |
best | 5.78 × 1009 | 3.04 × 1008 | 2.27 × 1009 | 9.57 × 1008 | 2.26 × 1008 | 5.88 × 1008 | 9.28 × 1008 | 1.09 × 1009 | 2.04 × 1008 | 1.11 × 1006 | |
F20 | mean | 5.69 × 1003 | 4.37 × 1003 | 4.21 × 1003 | 4.27 × 1003 | 4.34 × 1003 | 4.30 × 1003 | 4.33 × 1003 | 4.18 × 1003 | 3.88 × 1003 | 3.76 × 1003 |
std | 2.77 × 1002 | 1.96 × 1002 | 1.50 × 1002 | 2.45 × 1002 | 1.95 × 1002 | 2.99 × 1002 | 2.32 × 1002 | 2.50 × 1002 | 3.37 × 1002 | 3.70 × 1002 | |
best | 5.07 × 1003 | 4.14 × 1003 | 3.81 × 1003 | 3.55 × 1003 | 3.97 × 1003 | 3.60 × 1003 | 3.56 × 1003 | 3.47 × 1003 | 3.19 × 1003 | 2.98 × 1003 | |
F21 | mean | 3.58 × 1003 | 3.01 × 1003 | 3.19 × 1003 | 3.29 × 1003 | 2.97 × 1003 | 3.21 × 1003 | 3.23 × 1003 | 3.13 × 1003 | 2.95 × 1003 | 2.91 × 1003 |
std | 1.35 × 1002 | 4.64 × 1001 | 5.16 × 1001 | 9.23 × 1001 | 4.66 × 1001 | 1.12 × 1002 | 9.05 × 1001 | 4.78 × 1001 | 3.29 × 1001 | 4.46 × 1001 | |
best | 3.30 × 1003 | 2.91 × 1003 | 3.08 × 1003 | 3.13 × 1003 | 2.88 × 1003 | 3.00 × 1003 | 3.05 × 1003 | 3.02 × 1003 | 2.87 × 1003 | 2.83 × 1003 | |
F22 | mean | 2.00 × 1004 | 1.69 × 1004 | 1.69 × 1004 | 1.71 × 1004 | 1.71 × 1004 | 1.69 × 1004 | 1.71 × 1004 | 1.75 × 1004 | 1.66 × 1004 | 1.53 × 1004 |
std | 7.66 × 1002 | 1.62 × 1003 | 4.36 × 1002 | 6.17 × 1002 | 5.36 × 1002 | 6.91 × 1002 | 1.05 × 1003 | 5.13 × 1002 | 8.43 × 1002 | 2.73 × 1003 | |
best | 1.87 × 1004 | 8.58 × 1003 | 1.62 × 1004 | 1.55 × 1004 | 1.61 × 1004 | 1.53 × 1004 | 1.31 × 1004 | 1.61 × 1004 | 1.40 × 1004 | 8.55 × 1003 | |
F23 | mean | 5.29 × 1003 | 3.52 × 1003 | 4.16 × 1003 | 4.59 × 1003 | 3.69 × 1003 | 4.20 × 1003 | 4.60 × 1003 | 4.32 × 1003 | 3.87 × 1003 | 3.49 × 1003 |
std | 4.48 × 1002 | 7.20 × 1001 | 7.73 × 1001 | 1.73 × 1002 | 6.37 × 1001 | 1.80 × 1002 | 2.52 × 1002 | 1.50 × 1002 | 1.28 × 1002 | 6.16 × 1001 | |
best | 4.43 × 1003 | 3.36 × 1003 | 4.00 × 1003 | 4.15 × 1003 | 3.55 × 1003 | 3.82 × 1003 | 4.18 × 1003 | 3.99 × 1003 | 3.65 × 1003 | 3.34 × 1003 | |
F24 | mean | 5.92 × 1003 | 3.62 × 1003 | 4.52 × 1003 | 4.96 × 1003 | 3.90 × 1003 | 4.52 × 1003 | 5.40 × 1003 | 4.75 × 1003 | 4.25 × 1003 | 3.62 × 1003 |
std | 4.00 × 1002 | 6.45 × 1001 | 1.69 × 1002 | 2.66 × 1002 | 8.37 × 1001 | 2.06 × 1002 | 2.91 × 1002 | 1.75 × 1002 | 1.05 × 1002 | 6.11 × 1001 | |
best | 5.18 × 1003 | 3.57 × 1003 | 4.24 × 1003 | 4.37 × 1003 | 3.67 × 1003 | 4.15 × 1003 | 4.92 × 1003 | 4.35 × 1003 | 4.05 × 1003 | 3.52 × 1003 | |
F25 | mean | 6.45 × 1004 | 1.38 × 1004 | 1.46 × 1004 | 1.57 × 1004 | 9.55 × 1003 | 1.20 × 1004 | 1.62 × 1004 | 1.26 × 1004 | 8.48 × 1003 | 6.57 × 1003 |
std | 1.17 × 1004 | 1.97 × 1003 | 7.87 × 1002 | 1.34 × 1003 | 1.51 × 1003 | 1.16 × 1003 | 1.18 × 1003 | 7.73 × 1002 | 9.79 × 1002 | 5.52 × 1002 | |
best | 3.77 × 1004 | 9.12 × 1003 | 1.30 × 1004 | 1.16 × 1004 | 7.52 × 1003 | 9.88 × 1003 | 1.34 × 1004 | 1.12 × 1004 | 6.87 × 1003 | 5.73 × 1003 | |
F26 | mean | 3.36 × 1004 | 1.77 × 1004 | 1.68 × 1004 | 1.79 × 1004 | 1.40 × 1004 | 1.64 × 1003 | 1.81 × 1004 | 1.55 × 1004 | 1.38 × 1004 | 1.24 × 1004 |
std | 5.63 × 1003 | 1.78 × 1003 | 3.80 × 1002 | 6.46 × 1002 | 9.39 × 1002 | 1.35 × 1003 | 6.54 × 1002 | 7.33 × 1002 | 7.85 × 1002 | 1.10 × 1003 | |
best | 2.47 × 1004 | 1.15 × 1004 | 1.62 × 1004 | 1.65 × 1004 | 1.24 × 1004 | 1.31 × 1003 | 1.59 × 1004 | 1.42 × 1004 | 1.16 × 1004 | 1.04 × 1004 | |
F27 | mean | 9.49 × 1003 | 4.30 × 1003 | 6.31 × 1003 | 7.08 × 1003 | 4.97 × 1003 | 6.56 × 1003 | 6.67 × 1003 | 6.84 × 1003 | 5.48 × 1003 | 3.99 × 1003 |
std | 1.09 × 1003 | 1.56 × 1002 | 2.43 × 1002 | 8.57 × 1002 | 2.42 × 1002 | 7.49 × 1002 | 7.30 × 1002 | 6.65 × 1002 | 3.33 × 1002 | 1.63 × 1002 | |
best | 7.35 × 1003 | 4.05 × 1003 | 5.95 × 1003 | 5.64 × 1003 | 4.65 × 1003 | 5.38 × 1003 | 5.23 × 1003 | 5.54 × 1003 | 4.63 × 1003 | 3.73 × 1003 | |
F28 | mean | 2.61 × 1004 | 2.61 × 1004 | 1.24 × 1004 | 1.41 × 1004 | 9.18 × 1003 | 1.15 × 1004 | 1.47 × 1004 | 1.13 × 1004 | 7.99 × 1003 | 6.76 × 1003 |
std | 3.32 × 1003 | 8.99 × 1002 | 7.94 × 1002 | 1.41 × 1003 | 8.90 × 1002 | 1.36 × 1003 | 1.25 × 1003 | 6.34 × 1002 | 6.05 × 1002 | 5.34 × 1002 | |
best | 2.10 × 1004 | 7.73 × 1003 | 9.36 × 1003 | 1.13 × 1004 | 7.76 × 1003 | 9.07 × 1003 | 1.25 × 1004 | 9.99 × 1003 | 7.04 × 1003 | 6.14 × 1003 | |
F29 | mean | 5.60 × 1006 | 8.23 × 1003 | 3.37 × 1004 | 1.24 × 1005 | 8.98 × 1003 | 2.91 × 1004 | 3.52 × 1005 | 2.03 × 1004 | 9.76 × 1003 | 6.95 × 1003 |
std | 5.77 × 1006 | 9.03 × 1002 | 1.60 × 1004 | 1.21 × 1005 | 1.12 × 1003 | 1.74 × 1004 | 3.28 × 1005 | 5.65 × 1003 | 1.62 × 1003 | 5.18 × 1002 | |
best | 1.83 × 1005 | 6.85 × 1003 | 1.16 × 1004 | 1.11 × 1004 | 7.02 × 1003 | 1.12 × 1004 | 3.18 × 1004 | 1.00 × 1004 | 7.40 × 1003 | 6.00 × 1003 | |
F30 | mean | 2.31 × 1010 | 1.26 × 1009 | 5.01 × 1009 | 8.74 × 1009 | 1.44 × 1009 | 4.40 × 1009 | 8.60 × 1009 | 3.48 × 1009 | 1.24 × 1009 | 1.50 × 1008 |
std | 9.07 × 1009 | 3.48 × 1008 | 9.99 × 1008 | 3.12 × 1009 | 5.44 × 1008 | 1.89 × 1009 | 2.58 × 1009 | 1.33 × 1009 | 8.18 × 1008 | 6.51 × 1007 | |
best | 8.97 × 1009 | 6.46 × 1008 | 2.99 × 1009 | 2.74 × 1009 | 6.64 × 1008 | 1.25 × 1009 | 4.66 × 1009 | 1.66 × 1009 | 5.09 × 1008 | 5.72 × 1007 |
TROA | PIO | BWO | COA | SCA | WOA | BOA | SCSO | GJO | DHTROA | ||
---|---|---|---|---|---|---|---|---|---|---|---|
F1 | mean | 6.26 × 1011 | 2.68 × 1011 | 2.59 × 1011 | 2.71 × 1011 | 2.15 × 1011 | 2.35 × 1011 | 2.66 × 1011 | 2.47 × 1011 | 1.99 × 1011 | 1.73 × 1011 |
std | 3.93 × 1010 | 1.49 × 1010 | 5.63 × 1009 | 1.15 × 1010 | 1.81 × 1010 | 9.81 × 1009 | 9.90 × 1009 | 9.55 × 1009 | 9.23 × 1009 | 8.81 × 1009 | |
best | 5.23 × 1011 | 2.43 × 1011 | 2.47 × 1011 | 2.34 × 1011 | 1.87 × 1011 | 2.12 × 1011 | 2.50 × 1011 | 2.26 × 1011 | 1.83 × 1011 | 1.57 × 1011 | |
F3 | mean | 1.19 × 1013 | 4.98 × 1005 | 3.72 × 1005 | 3.58 × 1005 | 6.02 × 1005 | 7.88 × 1005 | 4.68 × 1005 | 3.50 × 1005 | 3.41 × 1005 | 3.96 × 1005 |
std | 3.99 × 1013 | 1.80 × 1005 | 1.96 × 1004 | 1.59 × 1004 | 8.86 × 1004 | 1.34 × 1005 | 1.75 × 1005 | 7.35 × 1003 | 1.57 × 1004 | 5.93 × 1004 | |
best | 9.74 × 1005 | 3.67 × 1005 | 3.32 × 1005 | 3.28 × 1005 | 4.80 × 1005 | 6.03 × 1005 | 3.31 × 1005 | 3.36 × 1005 | 2.79 × 1005 | 2.79 × 1005 | |
F4 | mean | 3.21 × 1005 | 7.15 × 1004 | 9.94 × 1004 | 1.12 × 1005 | 5.54 × 1004 | 7.68 × 1004 | 1.16 × 1005 | 7.32 × 1004 | 4.14 × 1004 | 3.27 × 1004 |
std | 5.13 × 1004 | 1.25 × 1004 | 8.43 × 1003 | 1.34 × 1004 | 9.51 × 1003 | 1.20 × 1004 | 1.04 × 1004 | 7.43 × 1003 | 5.04 × 1003 | 4.47 × 1003 | |
best | 2.22 × 1005 | 5.56 × 1004 | 8.46 × 1004 | 8.23 × 1004 | 3.91 × 1004 | 5.63 × 1004 | 9.72 × 1004 | 5.86 × 1004 | 2.97 × 1004 | 2.44 × 1004 | |
F5 | mean | 3.22 × 1003 | 2.22 × 1003 | 2.12 × 1003 | 2.12 × 1003 | 2.06 × 1003 | 2.12 × 1003 | 2.11 × 1003 | 2.10 × 1003 | 1.96 × 1003 | 1.95 × 1003 |
std | 1.06 × 1002 | 4.75 × 1001 | 2.01 × 1001 | 3.27 × 1001 | 6.70 × 1001 | 6.44 × 1001 | 3.18 × 1001 | 3.38 × 1001 | 5.62 × 1001 | 3.99 × 1001 | |
best | 3.00 × 1003 | 2.13 × 1003 | 2.08 × 1003 | 2.03 × 1003 | 1.94 × 1003 | 1.98 × 1003 | 2.01 × 1003 | 2.01 × 1003 | 1.88 × 1003 | 1.86 × 1003 | |
F6 | mean | 7.68 × 1002 | 7.18 × 1002 | 7.13 × 1002 | 7.14 × 1002 | 7.04 × 1002 | 7.15 × 1002 | 7.12 × 1002 | 7.14 × 1002 | 7.04 × 1002 | 6.99 × 1002 |
std | 9.85 × 1000 | 5.30 × 1000 | 3.06 × 1000 | 3.37 × 1000 | 5.27 × 1000 | 4.23 × 1000 | 3.78 × 1000 | 2.49 × 1000 | 2.70 × 1000 | 4.02 × 1000 | |
best | 7.46 × 1002 | 7.11 × 1002 | 7.06 × 1002 | 7.07 × 1002 | 6.95 × 1002 | 7.07 × 1002 | 7.01 × 1002 | 7.07 × 1002 | 6.99 × 1002 | 6.90 × 1002 | |
F7 | mean | 1.34 × 1004 | 4.17 × 1003 | 3.88 × 1003 | 4.01 × 1003 | 4.06 × 1003 | 4.00 × 1003 | 3.97 × 1003 | 3.97 × 1003 | 3.54 × 1003 | 3.53 × 1003 |
std | 6.99 × 1002 | 7.77 × 1001 | 7.95 × 1001 | 6.46 × 1001 | 2.80 × 1002 | 7.37 × 1001 | 6.32 × 1001 | 6.42 × 1001 | 8.59 × 1001 | 1.21 × 1002 | |
best | 1.19 × 1004 | 3.98 × 1003 | 3.66 × 1003 | 3.85 × 1003 | 3.66 × 1003 | 3.85 × 1003 | 3.85 × 1003 | 3.83 × 1003 | 3.35 × 1003 | 3.28 × 1003 | |
F8 | mean | 3.60 × 1003 | 2.67 × 1003 | 2.62 × 1003 | 2.60 × 1003 | 2.41 × 1003 | 2.58 × 1003 | 2.58 × 1003 | 2.58 × 1003 | 2.39 × 1003 | 2.37 × 1003 |
std | 1.54 × 1002 | 6.08 × 1001 | 3.44 × 1001 | 5.46 × 1001 | 8.18 × 1001 | 7.94 × 1001 | 3.67 × 1001 | 3.76 × 1001 | 5.31 × 1001 | 6.36 × 1001 | |
best | 3.28 × 1003 | 2.52 × 1003 | 2.52 × 1003 | 2.46 × 1003 | 2.24 × 1003 | 2.33 × 1003 | 2.46 × 1003 | 2.49 × 1003 | 2.27 × 1003 | 2.24 × 1003 | |
F9 | mean | 2.36 × 1005 | 1.02 × 1005 | 7.99 × 1004 | 7.98 × 1004 | 8.96 × 1004 | 8.37 × 1004 | 8.40 × 1004 | 8.08 × 1004 | 7.44 × 1004 | 7.39 × 1004 |
std | 2.36 × 1004 | 6.32 × 1003 | 4.17 × 1003 | 3.86 × 1003 | 9.86 × 1003 | 8.07 × 1003 | 4.28 × 1003 | 3.63 × 1003 | 5.26 × 1003 | 4.65 × 1003 | |
best | 1.61 × 1005 | 8.14 × 1004 | 6.92 × 1004 | 7.05 × 1004 | 6.95 × 1004 | 6.86 × 1004 | 7.19 × 1004 | 7.53 × 1004 | 6.54 × 1004 | 6.46 × 1004 | |
F10 | mean | 3.69 × 1004 | 3.33 × 1004 | 3.23 × 1004 | 3.27 × 1004 | 3.29 × 1004 | 3.27 × 1004 | 3.30 × 1004 | 3.22 × 1004 | 3.19 × 1004 | 3.18 × 1004 |
std | 9.04 × 1002 | 4.71 × 1002 | 6.17 × 1002 | 6.49 × 1002 | 7.16 × 1002 | 9.27 × 1002 | 6.98 × 1002 | 8.18 × 1002 | 1.23 × 1003 | 9.49 × 1002 | |
best | 3.53 × 1004 | 3.21 × 1004 | 3.09 × 1004 | 3.15 × 1004 | 3.13 × 1004 | 3.07 × 1004 | 3.14 × 1004 | 3.03 × 1004 | 2.94 × 1004 | 2.88 × 1004 | |
F11 | mean | 7.81 × 1009 | 2.32 × 1005 | 3.35 × 1005 | 3.03 × 1005 | 1.73 × 1005 | 4.62 × 1005 | 3.88 × 1005 | 1.96 × 1005 | 1.54 × 1005 | 1.28 × 1005 |
std | 1.63 × 1010 | 3.89 × 1004 | 6.16 × 1004 | 7.10 × 1004 | 3.60 × 1004 | 1.99 × 1005 | 2.01 × 1005 | 2.73 × 1004 | 1.99 × 1004 | 1.29 × 1004 | |
best | 5.23 × 1005 | 1.64 × 1005 | 2.23 × 1005 | 1.97 × 1005 | 1.06 × 1005 | 2.00 × 1005 | 1.71 × 1005 | 1.52 × 1005 | 1.24 × 1005 | 1.03 × 1005 | |
F12 | mean | 3.79 × 1011 | 9.03 × 1010 | 1.96 × 1011 | 2.12 × 1011 | 1.05 × 1011 | 1.61 × 1011 | 1.93 × 1011 | 1.74 × 1011 | 1.06 × 1011 | 7.38 × 1010 |
std | 4.60 × 1010 | 1.24 × 1010 | 1.03 × 1010 | 1.77 × 1010 | 1.07 × 1010 | 1.62 × 1010 | 2.33 × 1010 | 1.32 × 1010 | 1.23 × 1010 | 1.23 × 1010 | |
best | 2.75 × 1011 | 6.77 × 1010 | 1.67 × 1011 | 1.67 × 1011 | 8.57 × 1010 | 1.30 × 1011 | 1.49 × 1011 | 1.45 × 1011 | 8.71 × 1010 | 3.83 × 1010 | |
F13 | mean | 9.97 × 1010 | 1.46 × 1010 | 4.32 × 1010 | 4.91 × 1010 | 1.80 × 1010 | 3.57 × 1010 | 4.54 × 1010 | 3.86 × 1010 | 2.10 × 1010 | 1.05 × 1010 |
std | 1.18 × 1010 | 2.70 × 1009 | 3.84 × 1009 | 5.25 × 1009 | 3.27 × 1009 | 5.56 × 1009 | 6.02 × 1009 | 3.75 × 1009 | 3.83 × 1009 | 2.52 × 1009 | |
best | 7.26 × 1010 | 1.01 × 1010 | 3.40 × 1010 | 4.00 × 1010 | 1.25 × 1010 | 2.08 × 1010 | 3.41 × 1010 | 2.98 × 1010 | 1.21 × 1010 | 5.11 × 1009 | |
F14 | mean | 9.42 × 1008 | 7.61 × 1007 | 8.18 × 1007 | 9.55 × 1007 | 6.44 × 1007 | 5.89 × 1007 | 1.22 × 1008 | 6.09 × 1007 | 2.84 × 1007 | 1.00 × 1007 |
std | 4.91 × 1008 | 1.78 × 1007 | 3.07 × 1007 | 4.47 × 1007 | 2.18 × 1007 | 3.03 × 1007 | 7.80 × 1007 | 2.08 × 1007 | 1.30 × 1007 | 2.42 × 1006 | |
best | 2.16 × 1008 | 4.55 × 1007 | 3.76 × 1007 | 3.28 × 1007 | 2.23 × 1007 | 2.15 × 1007 | 2.74 × 1007 | 2.22 × 1007 | 1.31 × 1007 | 5.39 × 1006 | |
F15 | mean | 5.53 × 1010 | 5.31 × 1009 | 2.25 × 1010 | 2.65 × 1010 | 6.67 × 1009 | 1.69 × 1010 | 2.50 × 1010 | 1.90 × 1010 | 7.36 × 1009 | 1.78 × 1009 |
std | 9.35 × 1009 | 1.20 × 1009 | 3.65 × 1009 | 5.03 × 1009 | 1.88 × 1009 | 4.16 × 1009 | 5.19 × 1009 | 2.27 × 1009 | 2.49 × 1009 | 6.23 × 1008 | |
best | 3.79 × 1010 | 3.00 × 1009 | 1.35 × 1010 | 1.35 × 1010 | 4.35 × 1009 | 1.08 × 1010 | 1.22 × 1010 | 1.45 × 1010 | 4.29 × 1009 | 5.31 × 1008 | |
F16 | mean | 4.40 × 1004 | 1.47 × 1004 | 2.23 × 1004 | 2.53 × 1004 | 1.52 × 1004 | 2.43 × 1004 | 2.67 × 1004 | 2.01 × 1004 | 1.44 × 1004 | 1.41 × 1004 |
std | 8.37 × 1003 | 1.19 × 1003 | 1.35 × 1003 | 2.58 × 1003 | 1.12 × 1003 | 3.63 × 1003 | 2.26 × 1003 | 1.83 × 1003 | 1.28 × 1003 | 9.98 × 1002 | |
best | 2.88 × 1004 | 1.32 × 1004 | 1.96 × 1004 | 1.84 × 1004 | 1.28 × 1004 | 1.77 × 1004 | 2.16 × 1004 | 1.60 × 1004 | 1.26 × 1004 | 1.20 × 1004 | |
F17 | mean | 1.60 × 1008 | 3.07 × 1004 | 5.15 × 1006 | 1.25 × 1007 | 6.67 × 1004 | 3.16 × 1006 | 1.49 × 1007 | 2.63 × 1006 | 2.28 × 1005 | 1.86 × 1004 |
std | 1.10 × 1008 | 2.43 × 1004 | 2.88 × 1006 | 1.16 × 1007 | 9.10 × 1004 | 2.66 × 1006 | 1.34 × 1007 | 1.81 × 1006 | 2.54 × 1005 | 1.14 × 1004 | |
best | 1.08 × 1007 | 1.24 × 1004 | 3.88 × 1005 | 1.67 × 1006 | 1.24 × 1004 | 6.84 × 1004 | 6.10 × 1005 | 6.83 × 1005 | 1.84 × 1004 | 1.06 × 1004 | |
F18 | mean | 1.98 × 1009 | 1.32 × 1008 | 2.06 × 1008 | 3.39 × 1008 | 1.39 × 1008 | 6.90 × 1007 | 2.62 × 1008 | 1.08 × 1008 | 3.63 × 1007 | 1.53 × 1007 |
std | 7.55 × 1008 | 3.80 × 1007 | 7.19 × 1007 | 1.42 × 1008 | 5.81 × 1007 | 5.83 × 1007 | 1.32 × 1008 | 3.45 × 1007 | 1.55 × 1007 | 4.59 × 1006 | |
best | 6.88 × 1008 | 6.05 × 1007 | 6.46 × 1007 | 5.22 × 1007 | 2.57 × 1007 | 1.26 × 1007 | 8.63 × 1007 | 4.87 × 1007 | 1.57 × 1007 | 6.42 × 1006 | |
F19 | mean | 5.34 × 1010 | 5.50 × 1009 | 2.32 × 1010 | 2.52 × 1010 | 5.08 × 1009 | 1.62 × 1010 | 2.36 × 1010 | 1.78 × 1010 | 7.23 × 1009 | 1.55 × 1009 |
std | 8.26 × 1009 | 1.40 × 1009 | 2.28 × 1009 | 4.31 × 1009 | 1.26 × 1009 | 4.27 × 1009 | 4.76 × 1009 | 3.23 × 1009 | 2.21 × 1009 | 5.59 × 1008 | |
best | 3.75 × 1010 | 1.70 × 1009 | 1.83 × 1010 | 1.22 × 1010 | 2.54 × 1009 | 6.92 × 1009 | 1.44 × 1010 | 1.05 × 1010 | 3.83 × 1009 | 4.72 × 1008 | |
F20 | mean | 9.99 × 1003 | 8.10 × 1003 | 7.75 × 1003 | 7.93 × 1003 | 8.06 × 1003 | 7.94 × 1003 | 8.13 × 1003 | 7.83 × 1003 | 7.37 × 1003 | 7.37 × 1003 |
std | 4.52 × 1002 | 5.21 × 1002 | 1.79 × 1002 | 3.41 × 1002 | 3.19 × 1002 | 4.37 × 1002 | 2.51 × 1002 | 4.32 × 1002 | 4.74 × 1002 | 3.11 × 1002 | |
best | 8.40 × 1003 | 5.93 × 1003 | 7.34 × 1003 | 7.05 × 1003 | 7.37 × 1003 | 6.73 × 1003 | 7.55 × 1003 | 6.32 × 1003 | 6.37 × 1003 | 6.54 × 1003 | |
F21 | mean | 5.63 × 1003 | 4.08 × 1003 | 4.80 × 1003 | 5.08 × 1003 | 4.22 × 1003 | 4.70 × 1003 | 4.82 × 1003 | 4.80 × 1003 | 4.23 × 1003 | 3.99 × 1003 |
std | 2.43 × 1002 | 9.69 × 1001 | 1.04 × 1002 | 2.18 × 1002 | 1.11 × 1002 | 1.98 × 1002 | 1.77 × 1002 | 1.44 × 1002 | 1.20 × 1002 | 9.21 × 1001 | |
best | 5.20 × 1003 | 3.90 × 1003 | 4.56 × 1003 | 4.61 × 1003 | 4.03 × 1003 | 4.25 × 1003 | 4.49 × 1003 | 4.51 × 1003 | 4.02 × 1003 | 3.78 × 1003 | |
F22 | mean | 3.96 × 1004 | 3.57 × 1004 | 3.50 × 1004 | 3.52 × 1004 | 3.54 × 1004 | 3.51 × 1004 | 3.55 × 1004 | 3.50 × 1004 | 3.49 × 1004 | 3.47 × 1004 |
std | 8.79 × 1002 | 8.16 × 1002 | 5.49 × 1002 | 7.35 × 1002 | 5.61 × 1002 | 1.01 × 1003 | 5.80 × 1002 | 8.04 × 1002 | 1.03 × 1003 | 8.01 × 1002 | |
best | 3.79 × 1004 | 3.44 × 1004 | 3.32 × 1004 | 3.31 × 1004 | 3.39 × 1004 | 3.30 × 1004 | 3.41 × 1004 | 3.36 × 1004 | 3.31 × 1004 | 3.29 × 1004 | |
F23 | mean | 8.76 × 1003 | 4.73 × 1003 | 6.11 × 1003 | 6.84 × 1003 | 5.27 × 1003 | 6.09 × 1003 | 6.62 × 1003 | 6.76 × 1003 | 6.29 × 1003 | 4.64 × 1003 |
std | 7.61 × 1002 | 1.32 × 1002 | 1.85 × 1002 | 2.71 × 1002 | 1.20 × 1002 | 3.33 × 1002 | 2.04 × 1002 | 4.27 × 1002 | 3.16 × 1002 | 1.47 × 1002 | |
best | 7.56 × 1003 | 4.53 × 1003 | 5.68 × 1003 | 6.01 × 1003 | 4.97 × 1003 | 5.47 × 1003 | 6.19 × 1003 | 5.75 × 1003 | 5.64 × 1003 | 4.31 × 1003 | |
F24 | mean | 1.46 × 1004 | 5.89 × 1003 | 9.34 × 1003 | 1.06 × 1004 | 7.46 × 1003 | 9.18 × 1003 | 1.25 × 1004 | 1.07 × 1004 | 9.37 × 1003 | 5.70 × 1003 |
std | 1.19 × 1003 | 1.53 × 1002 | 3.65 × 1002 | 9.56 × 1002 | 2.71 × 1002 | 9.96 × 1002 | 1.30 × 1003 | 8.51 × 1002 | 5.19 × 1002 | 2.11 × 1002 | |
best | 1.07 × 1004 | 5.51 × 1003 | 8.63 × 1003 | 9.03 × 1003 | 6.82 × 1003 | 7.11 × 1003 | 9.55 × 1003 | 8.84 × 1003 | 8.26 × 1003 | 5.29 × 1003 | |
F25 | mean | 1.54 × 1005 | 2.95 × 1004 | 2.76 × 1004 | 2.94 × 1004 | 2.26 × 1004 | 2.38 × 1004 | 2.95 × 1004 | 2.36 × 1004 | 1.75 × 1004 | 1.49 × 1004 |
std | 2.07 × 1004 | 2.81 × 1003 | 1.24 × 1003 | 1.97 × 1003 | 2.89 × 1003 | 2.27 × 1003 | 1.25 × 1003 | 1.99 × 1003 | 1.30 × 1003 | 1.21 × 1003 | |
best | 1.21 × 1005 | 2.30 × 1004 | 2.49 × 1004 | 2.45 × 1004 | 1.66 × 1004 | 1.97 × 1004 | 2.72 × 1004 | 2.04 × 1004 | 1.47 × 1004 | 1.21 × 1004 | |
F26 | mean | 1.00 × 1005 | 4.41 × 1004 | 5.06 × 1004 | 5.32 × 1004 | 4.18 × 1004 | 4.67 × 1004 | 5.80 × 1004 | 5.08 × 1004 | 4.10 × 1004 | 3.86 × 1004 |
std | 1.29 × 1004 | 9.87 × 1003 | 1.86 × 1003 | 1.96 × 1003 | 3.41 × 1003 | 3.40 × 1003 | 2.62 × 1003 | 1.83 × 1003 | 1.60 × 1003 | 1.74 × 1003 | |
best | 7.79 × 1004 | 3.01 × 1004 | 4.67 × 1004 | 5.00 × 1004 | 3.57 × 1004 | 4.08 × 1004 | 5.28 × 1004 | 4.65 × 1004 | 3.79 × 1004 | 3.52 × 1004 | |
F27 | mean | 1.83 × 1004 | 6.67 × 1003 | 1.25 × 1004 | 1.49 × 1004 | 8.76 × 1003 | 1.19 × 1004 | 1.54 × 1004 | 1.26 × 1004 | 9.81 × 1003 | 5.93 × 1003 |
std | 2.08 × 1003 | 5.63 × 1002 | 7.43 × 1002 | 1.86 × 1003 | 5.28 × 1002 | 2.04 × 1003 | 9.90 × 1002 | 1.23 × 1003 | 6.51 × 1002 | 4.54 × 1002 | |
best | 1.27 × 1004 | 5.93 × 1003 | 1.12 × 1004 | 1.08 × 1004 | 7.60 × 1003 | 8.99 × 1003 | 1.34 × 1004 | 9.94 × 1003 | 8.09 × 1003 | 5.16 × 1003 | |
F28 | mean | 7.71 × 1004 | 3.31 × 1004 | 2.74 × 1004 | 3.06 × 1004 | 2.81 × 1004 | 2.81 × 1004 | 3.67 × 1004 | 3.00 × 1004 | 2.30 × 1004 | 2.04 × 1004 |
std | 9.91 × 1003 | 1.29 × 1003 | 9.67 × 1002 | 1.55 × 1003 | 2.96 × 1003 | 2.40 × 1003 | 1.85 × 1003 | 1.34 × 1003 | 1.88 × 1003 | 1.33 × 1003 | |
best | 5.77 × 1004 | 2.81 × 1004 | 2.49 × 1004 | 2.58 × 1004 | 2.16 × 1004 | 2.33 × 1004 | 3.34 × 1004 | 2.79 × 1004 | 2.00 × 1004 | 1.75 × 1004 | |
F29 | mean | 2.42 × 1007 | 4.37 × 1004 | 4.68 × 1005 | 7.97 × 1005 | 3.90 × 1004 | 2.23 × 1005 | 9.68 × 1005 | 2.65 × 1005 | 4.63 × 1004 | 1.78 × 1004 |
std | 1.61 × 1007 | 3.28 × 1004 | 1.85 × 1005 | 4.56 × 1005 | 1.69 × 1004 | 1.55 × 1005 | 5.90 × 1005 | 1.44 × 1005 | 2.13 × 1004 | 3.20 × 1003 | |
best | 7.42 × 1005 | 1.96 × 1004 | 1.33 × 1005 | 1.33 × 1005 | 2.05 × 1004 | 3.74 × 1004 | 3.08 × 1005 | 6.11 × 1004 | 2.21 × 1004 | 1.31 × 1004 | |
F30 | mean | 8.54 × 1010 | 7.38 × 1009 | 4.10 × 1010 | 4.07 × 1010 | 1.18 × 1010 | 3.19 × 1010 | 4.06 × 1010 | 3.58 × 1010 | 1.89 × 1010 | 7.13 × 1009 |
std | 1.55 × 1010 | 1.76 × 1009 | 2.62 × 1009 | 6.61 × 1009 | 2.20 × 1009 | 6.11 × 1009 | 6.17 × 1009 | 4.33 × 1009 | 3.01 × 1009 | 2.13 × 1009 | |
best | 4.77 × 1010 | 5.27 × 1009 | 3.51 × 1010 | 2.65 × 1010 | 7.08 × 1009 | 2.11 × 1010 | 2.17 × 1010 | 2.90 × 1010 | 1.38 × 1010 | 3.97 × 1009 |
TROA | PIO | BWO | COA | SCA | WOA | BOA | SCSO | GJO | |
---|---|---|---|---|---|---|---|---|---|
F1 | 8.63 × 10−10 | 6.75 × 10−09 | 4.01 × 10−11 | 5.07 × 10−11 | 2.69 × 10−11 | 6.08 × 10−11 | 6.25 × 10−11 | 3.02 × 10−11 | 4.08 × 10−11 |
F3 | 4.22 × 10−10 | 8.15 × 10−10 | 4.82 × 10−11 | 5.82 × 10−11 | 8.09 × 10−11 | 3.45 × 10−11 | 3.65 × 10−11 | 2.37 × 10−10 | 8.15 × 10−05 |
F4 | 3.01 × 10−11 | 2.20 × 10−08 | 3.35 × 10−11 | 3.12 × 10−11 | 2.87 × 10−10 | 3.58 × 10−11 | 3.72 × 10−11 | 3.02 × 10−11 | 8.35 × 10−08 |
F5 | 3.25 × 10−11 | 1.58 × 10−04 | 4.25 × 10−11 | 9.69 × 10−11 | 7.17 × 10−01 | 4.98 × 10−11 | 6.07 × 10−11 | 3.34 × 10−11 | 2.24 × 10−02 |
F6 | 9.85 × 10−08 | 6.79 × 10−03 | 8.75 × 10−11 | 9.02 × 10−11 | 2.51 × 10−02 | 1.33 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 1.07 × 10−07 |
F7 | 3.47 × 10−10 | 8.58 × 10−09 | 7.33 × 10−11 | 9.07 × 10−11 | 1.85 × 10−07 | 9.05 × 10−11 | 8.32 × 10−11 | 3.69 × 10−11 | 1.68 × 10−03 |
F8 | 7.64 × 10−11 | 2.56 × 10−10 | 4.98 × 10−11 | 2.69 × 10−11 | 2.00 × 10−05 | 9.34 × 10−10 | 8.36 × 10−11 | 3.02 × 10−11 | 2.46 × 10−01 |
F9 | 3.55 × 10−11 | 1.61 × 10−10 | 8.36 × 10−11 | 6.38 × 10−08 | 5.34 × 10−03 | 7.58 × 10−11 | 7.39 × 10−11 | 3.34 × 10−11 | 1.27 × 10−02 |
F10 | 5.49 × 10−11 | 4.42 × 10−06 | 6.23 × 10−03 | 5.36 × 10−04 | 2.75 × 10−07 | 8.31 × 10−03 | 7.12 × 10−11 | 4.21 × 10−02 | 4.51 × 10−02 |
F11 | 3.45 × 10−11 | 8.36 × 10−09 | 8.11 × 10−11 | 7.25 × 10−08 | 6.70 × 10−11 | 6.39 × 10−11 | 8.34 × 10−11 | 3.02 × 10−11 | 3.34 × 10−11 |
F12 | 9.84 × 10−11 | 3.69 × 10−11 | 3.02 × 10−11 | 8.26 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 | 3.12 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 |
F13 | 5.23 × 10−11 | 3.02 × 10−11 | 4.56 × 10−11 | 3.36 × 10−11 | 6.52 × 10−10 | 1.24 × 10−11 | 8.52 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 |
F14 | 8.26 × 10−11 | 6.24 × 10−10 | 2.03 × 10−11 | 7.36 × 10−08 | 6.12 × 10−10 | 9.69 × 10−05 | 4.76 × 10−11 | 3.02 × 10−11 | 2.87 × 10−10 |
F15 | 7.09 × 10−11 | 8.88 × 10−08 | 3.41 × 10−11 | 2.33 × 10−11 | 8.42 × 10−09 | 4.73 × 10−11 | 6.36 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 |
F16 | 8.63 × 10−11 | 2.49 × 10−06 | 3.02 × 10−11 | 9.25 × 10−11 | 8.20 × 10−07 | 6.70 × 10−11 | 5.66 × 10−11 | 6.07 × 10−11 | 2.68 × 10−04 |
F17 | 3.25 × 10−11 | 1.86 × 10−09 | 3.35 × 10−11 | 3.02 × 10−11 | 2.02 × 10−08 | 2.37 × 10−11 | 6.38 × 10−11 | 3.02 × 10−11 | 7.66 × 10−05 |
F18 | 3.88 × 10−11 | 8.89 × 10−10 | 4.50 × 10−11 | 3.69 × 10−11 | 2.37 × 10−10 | 1.96 × 10−11 | 9.58 × 10−11 | 3.82 × 10−10 | 6.36 × 10−05 |
F19 | 4.25 × 10−11 | 3.65 × 10−10 | 9.58 × 10−09 | 2.58 × 10−11 | 8.23 × 10−10 | 4.25 × 10−11 | 8.66 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 |
F20 | 5.14 × 10−11 | 2.15 × 10−10 | 3.69 × 10−11 | 1.78 × 10−11 | 5.57 × 10−10 | 4.98 × 10−11 | 4.98 × 10−11 | 5.46 × 10−09 | 6.28 × 10−06 |
F21 | 3.25 × 10−11 | 1.11 × 10−06 | 2.67 × 10−08 | 9.25 × 10−11 | 4.42 × 10−06 | 8.04 × 10−11 | 7.35 × 10−11 | 3.02 × 10−11 | 1.95 × 10−03 |
F22 | 3.02 × 10−11 | 1.56 × 10−08 | 8.48 × 10−09 | 1.86 × 10−11 | 3.47 × 10−10 | 5.07 × 10−11 | 8.48 × 10−11 | 6.53 × 10−08 | 1.87 × 10−07 |
F23 | 3.32 × 10−11 | 2.46 × 10−01 | 8.54 × 10−11 | 2.16 × 10−11 | 1.01 × 10−08 | 3.25 × 10−11 | 3.82 × 10−11 | 3.02 × 10−11 | 4.98 × 10−11 |
F24 | 3.71 × 10−11 | 5.37 × 10−03 | 3.62 × 10−11 | 3.11 × 10−11 | 3.52 × 10−09 | 7.14 × 10−11 | 6.35 × 10−11 | 3.02 × 10−11 | 3.34 × 10−11 |
F25 | 9.52 × 10−11 | 4.25 × 10−07 | 4.22 × 10−11 | 9.08 × 10−07 | 1.65 × 10−10 | 3.66 × 10−11 | 8.99 × 10−11 | 3.02 × 10−11 | 6.12 × 10−10 |
F26 | 3.05 × 10−11 | 3.03 × 10−03 | 6.35 × 10−11 | 6.25 × 10−11 | 9.88 × 10−03 | 3.62 × 10−11 | 9.25 × 10−11 | 3.69 × 10−11 | 4.44 × 10−07 |
F27 | 3.35 × 10−11 | 9.76 × 10−10 | 8.25 × 10−11 | 2.02 × 10−07 | 3.02 × 10−11 | 3.11 × 10−11 | 8.11 × 10−11 | 3.02 × 10−11 | 3.34 × 10−11 |
F28 | 9.13 × 10−11 | 6.45 × 10−10 | 9.29 × 10−07 | 6.24 × 10−08 | 1.92 × 10−09 | 9.20 × 10−11 | 2.66 × 10−11 | 3.02 × 10−11 | 4.69 × 10−08 |
F29 | 3.15 × 10−11 | 9.53 × 10−07 | 3.04 × 10−11 | 5.66 × 10−10 | 1.78 × 10−10 | 3.36 × 10−11 | 8.26 × 10−11 | 3.02 × 10−11 | 1.56 × 10−08 |
F30 | 9.32 × 10−11 | 5.63 × 10−08 | 2.89 × 10−07 | 2.02 × 10−11 | 5.96 × 10−09 | 8.25 × 10−11 | 8.23 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 |
+/=/− | 29/0/0 | 28/0/1 | 29/0/0 | 29/0/0 | 28/0/1 | 29/0/0 | 29/0/0 | 29/0/0 | 28/0/1 |
TROA | PIO | BWO | COA | SCA | WOA | BOA | SCSO | GJO | |
---|---|---|---|---|---|---|---|---|---|
F1 | 3.36 × 10−11 | 3.65 × 10−11 | 3.25 × 10−11 | 3.79 × 10−11 | 3.82 × 10−10 | 3.25 × 10−11 | 3.65 × 10−11 | 3.02 × 10−11 | 4.08 × 10−11 |
F3 | 3.56 × 10−11 | 4.98 × 10−11 | 3.69 × 10−11 | 2.03 × 10−07 | 9.26 × 10−09 | 3.25 × 10−11 | 6.70 × 10−11 | 1.25 × 10−04 | 1.37 × 10−01 |
F4 | 3.85 × 10−11 | 1.33 × 10−10 | 3.02 × 10−11 | 3.45 × 10−11 | 2.37 × 10−10 | 3.36 × 10−11 | 3.32 × 10−11 | 3.02 × 10−11 | 3.69 × 10−11 |
F5 | 3.35 × 10−11 | 3.69 × 10−11 | 3.34 × 10−11 | 3.34 × 10−11 | 4.80 × 10−07 | 3.69 × 10−11 | 3.34 × 10−11 | 3.34 × 10−11 | 4.64 × 10−05 |
F6 | 3.17 × 10−11 | 5.86 × 10−06 | 4.08 × 10−11 | 4.50 × 10−11 | 1.05 × 10−01 | 4.50 × 10−11 | 3.14 × 10−11 | 3.69 × 10−11 | 2.60 × 10−05 |
F7 | 3.36 × 10−11 | 3.78 × 10−11 | 5.49 × 10−11 | 3.36 × 10−11 | 5.09 × 10−08 | 3.14 × 10−11 | 3.69 × 10−11 | 6.07 × 10−11 | NaN |
F8 | 3.25 × 10−11 | 3.34 × 10−11 | 3.32 × 10−11 | 3.69 × 10−11 | 2.28 × 10−05 | 4.20 × 10−10 | 4.50 × 10−11 | 3.69 × 10−11 | 7.30 × 10−04 |
F9 | 3.56 × 10−11 | 1.56 × 10−08 | 8.15 × 10−11 | 3.20 × 10−09 | 1.06 × 10−03 | 1.07 × 10−09 | 4.50 × 10−11 | 4.98 × 10−11 | 9.07 × 10−03 |
F10 | 3.15 × 10−11 | 1.10 × 10−08 | 2.24 × 10−02 | 9.83 × 10−08 | 1.19 × 10−06 | 2.77 × 10−05 | 1.96 × 10−10 | 6.91 × 10−04 | NaN |
F11 | 3.32 × 10−11 | 1.33 × 10−10 | 3.09 × 10−11 | 3.27 × 10−11 | 7.12 × 10−09 | 3.24 × 10−11 | 3.05 × 10−11 | 3.02 × 10−11 | 1.21 × 10−10 |
F12 | 3.55 × 10−11 | 2.32 × 10−06 | 3.12 × 10−11 | 3.32 × 10−11 | 4.62 × 10−10 | 3.15 × 10−11 | 3.01 × 10−11 | 3.02 × 10−11 | 4.08 × 10−11 |
F13 | 3.44 × 10−11 | 4.50 × 10−11 | 3.32 × 10−11 | 3.14 × 10−11 | 3.17 × 10−11 | 3.32 × 10−11 | 3.09 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 |
F14 | 3.26 × 10−11 | 4.18 × 10−09 | 3.15 × 10−11 | 3.65 × 10−11 | 1.46 × 10−10 | 3.36 × 10−11 | 3.17 × 10−11 | 3.02 × 10−11 | 6.72 × 10−10 |
F15 | 3.36 × 10−11 | 3.36 × 10−11 | 3.78 × 10−11 | 3.79 × 10−11 | 3.62 × 10−11 | 3.17 × 10−11 | 3.25 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 |
F16 | 3.05 × 10−11 | 1.69 × 10−09 | 3.23 × 10−11 | 3.28 × 10−11 | 7.69 × 10−08 | 6.07 × 10−11 | 3.26 × 10−11 | 4.98 × 10−11 | NaN |
F17 | 3.03 × 10−11 | 3.34 × 10−11 | 3.34 × 10−11 | 4.08 × 10−11 | 1.96 × 10−10 | 1.21 × 10−10 | 3.31 × 10−11 | 3.02 × 10−11 | 1.34 × 10−05 |
F18 | 3.25 × 10−11 | 1.33 × 10−10 | 3.14 × 10−11 | 3.34 × 10−11 | 8.10 × 10−10 | 5.49 × 10−11 | 3.12 × 10−11 | 3.02 × 10−11 | 9.26 × 10−09 |
F19 | 3.12 × 10−11 | 3.36 × 10−11 | 3.25 × 10−11 | 3.36 × 10−11 | 3.35 × 10−11 | 3.06 × 10−11 | 3.21 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 |
F20 | 3.36 × 10−11 | 2.15 × 10−10 | 3.50 × 10−09 | 6.01 × 10−08 | 2.61 × 10−10 | 5.07 × 10−10 | 8.15 × 10−11 | 1.20 × 10−08 | 2.15 × 10−02 |
F21 | 3.25 × 10−11 | 5.60 × 10−07 | 3.36 × 10−11 | 3.45 × 10−11 | 8.66 × 10−05 | 3.34 × 10−11 | 3.21 × 10−11 | 3.02 × 10−11 | 1.00 × 10−03 |
F22 | 3.34 × 10−11 | 1.25 × 10−04 | NaN | 5.57 × 10−03 | 5.27 × 10−05 | 1.24 × 10−03 | 6.36 × 10−05 | 2.38 × 10−07 | 3.71 × 10−01 |
F23 | 3.39 × 10−11 | 1.26 × 10−01 | 3.86 × 10−11 | 3.35 × 10−11 | 5.57 × 10−10 | 3.11 × 10−11 | 3.15 × 10−11 | 3.02 × 10−11 | 4.50 × 10−11 |
F24 | 3.15 × 10−11 | 7.62 × 10−03 | 3.17 × 10−11 | 3.15 × 10−11 | 6.70 × 10−11 | 3.03 × 10−11 | 3.36 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 |
F25 | 3.36 × 10−11 | 3.32 × 10−11 | 3.36 × 10−11 | 3.78 × 10−11 | 1.61 × 10−10 | 3.01 × 10−11 | 3.15 × 10−11 | 3.02 × 10−11 | 6.52 × 10−09 |
F26 | 3.38 × 10−11 | 1.10 × 10−08 | 3.22 × 10−11 | 3.25 × 10−11 | 4.12 × 10−06 | 3.25 × 10−11 | 3.05 × 10−11 | 4.08 × 10−11 | 1.87 × 10−05 |
F27 | 3.02 × 10−11 | 6.53 × 10−07 | 3.08 × 10−11 | 3.36 × 10−11 | 9.92 × 10−11 | 3.33 × 10−11 | 3.14 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 |
F28 | 3.09 × 10−11 | 1.33 × 10−10 | 3.64 × 10−11 | 3.14 × 10−11 | 4.98 × 10−11 | 3.17 × 10−11 | 3.32 × 10−11 | 3.02 × 10−11 | 1.29 × 10−09 |
F29 | 3.14 × 10−11 | 3.47 × 10−10 | 3.14 × 10−11 | 3.63 × 10−11 | 6.70 × 10−11 | 3.21 × 10−11 | 3.25 × 10−11 | 3.02 × 10−11 | 6.70 × 10−11 |
F30 | 3.32 × 10−11 | 3.35 × 10−11 | 3.25 × 10−11 | 3.25 × 10−11 | 3.77 × 10−11 | 3.32 × 1011 | 3.36 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 |
+/=/− | 29/0/0 | 28/0/1 | 28/1/0 | 29/0/0 | 28/0/1 | 29/0/0 | 29/0/0 | 29/0/0 | 24/3/2 |
TROA | PIO | BWO | COA | SCA | WOA | BOA | SCSO | GJO | |
---|---|---|---|---|---|---|---|---|---|
F1 | 3.31 × 10−11 | 3.36 × 10−11 | 3.05 × 10−11 | 3.04 × 10−11 | 3.01 × 10−11 | 3.01 × 10−11 | 3.01 × 10−11 | 3.02 × 10−11 | 4.62 × 10−10 |
F3 | 3.14 × 10−11 | 9.71 × 10−01 | 6.97 × 10−03 | 5.97 × 10−05 | 1.78 × 10−10 | 3.69 × 10−11 | 8.88 × 10−01 | 2.39 × 10−04 | 8.20 × 10−07 |
F4 | 3.25 × 10−11 | 3.69 × 10−11 | 3.36 × 10−11 | 3.05 × 10−11 | 2.37 × 10−10 | 3.05 × 10−11 | 3.17 × 10−11 | 3.02 × 10−11 | 9.83 × 10−08 |
F5 | 3.17 × 10−11 | 3.35 × 10−11 | 3.47 × 10−11 | 8.99 × 10−11 | 2.83 × 10−08 | 1.21 × 10−10 | 3.05 × 10−11 | 3.02 × 10−11 | 4.64 × 10−02 |
F6 | 3.21 × 10−11 | 1.46 × 10−10 | 3.28 × 10−11 | 3.11 × 10−11 | 8.20 × 10−07 | 1.78 × 10−10 | 1.61 × 10−10 | 3.02 × 10−11 | 3.77 × 10−04 |
F7 | 3.76 × 10−11 | 3.69 × 10−11 | 3.17 × 10−11 | 3.05 × 10−11 | 5.49 × 10−11 | 3.08 × 10−11 | 3.18 × 10−11 | 3.02 × 10−11 | NaN |
F8 | 3.12 × 10−11 | 3.14 × 10−11 | 3.24 × 10−11 | 6.70 × 10−11 | 5.87 × 10−04 | 2.03 × 10−09 | 3.09 × 10−11 | 3.02 × 10−11 | 2.28 × 10−02 |
F9 | 3.25 × 10−11 | 1.96 × 10−10 | 4.31 × 10−08 | 2.03 × 10−09 | 4.08 × 10−11 | 3.35 × 10−08 | 1.09 × 10−10 | 3.50 × 10−09 | 8.77 × 10−01 |
F10 | 3.29 × 10−11 | 3.52 × 10−07 | 3.63 × 10−01 | 2.88 × 10−06 | 2.02 × 10−08 | 2.68 × 10−04 | 4.31 × 10−08 | 9.59 × 10−01 | 2.17 × 10−01 |
F11 | 3.14 × 10−11 | 3.34 × 10−11 | 3.16 × 10−11 | 3.24 × 10−11 | 2.20 × 10−07 | 3.37 × 10−11 | 3.36 × 10−11 | 3.02 × 10−11 | 4.69 × 10−08 |
F12 | 3.68 × 10−11 | 7.22 × 10−06 | 3.18 × 10−11 | 3.39 × 10−11 | 1.78 × 10−10 | 3.15 × 10−11 | 3.17 × 10−11 | 3.02 × 10−11 | 2.15 × 10−10 |
F13 | 3.31 × 10−11 | 2.60 × 10−08 | 3.32 × 10−11 | 3.47 × 10−11 | 8.15 × 10−11 | 3.36 × 10−11 | 3.56 × 10−11 | 3.02 × 10−11 | 4.08 × 10−11 |
F14 | 3.25 × 10−11 | 3.36 × 10−11 | 3.25 × 10−11 | 3.36 × 10−11 | 3.06 × 10−11 | 3.15 × 10−11 | 3.25 × 10−11 | 3.02 × 10−11 | 2.37 × 10−10 |
F15 | 3.14 × 10−11 | 4.98 × 10−11 | 3.17 × 10−11 | 3.14 × 10−11 | 3.19 × 10−11 | 3.08 × 10−11 | 3.07 × 10−11 | 3.02 × 10−11 | 4.50 × 10−11 |
F16 | 3.35 × 10−11 | 1.15 × 10−01 | 3.31 × 10−11 | 3.25 × 10−11 | 5.32 × 10−03 | 3.15 × 10−11 | 3.25 × 10−11 | 7.39 × 10−11 | 2.46 × 10−01 |
F17 | 3.17 × 10−11 | 3.67 × 10−03 | 3.17 × 10−11 | 3.14 × 10−11 | 1.29 × 10−06 | 3.36 × 10−11 | 3.07 × 10−11 | 3.02 × 10−11 | 8.15 × 10−11 |
F18 | 3.36 × 10−11 | 3.24 × 10−11 | 3.62 × 10−11 | 3.16 × 10−11 | 3.17 × 10−11 | 9.92 × 10−11 | 3.36 × 10−11 | 3.02 × 10−11 | 1.09 × 10−10 |
F19 | 3.23 × 10−11 | 1.33 × 10−10 | 3.16 × 10−11 | 3.19 × 10−11 | 1.96 × 10−10 | 3.85 × 10−11 | 3.15 × 10−11 | 3.02 × 10−11 | 4.08 × 10−11 |
F20 | 3.25 × 10−11 | 1.36 × 10−07 | 1.04 × 10−04 | 8.66 × 10−05 | 4.74 × 10−06 | 5.53 × 10−08 | 6.52 × 10−09 | 5.56 × 10−04 | 8.07 × 10−01 |
F21 | 3.65 × 10−11 | 3.37 × 10−05 | 3.18 × 10−11 | 3.24 × 10−11 | 1.20 × 10−08 | 3.17 × 10−11 | 3.17 × 10−11 | 3.02 × 10−11 | 2.44 × 10−09 |
F22 | 3.05 × 10−11 | 7.04 × 10−07 | 5.89 × 10−01 | 1.49 × 10−01 | 3.67 × 10−03 | 3.95 × 10−02 | 1.89 × 10−04 | 2.39 × 10−04 | 1.19 × 10−01 |
F23 | 3.17 × 10−11 | 6.00 × 10−01 | 3.36 × 10−11 | 3.08 × 10−11 | 3.36 × 10−11 | 3.74 × 10−11 | 3.28 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 |
F24 | 3.06 × 10−11 | 1.27 × 10−02 | 3.27 × 10−11 | 3.09 × 10−11 | 3.05 × 10−11 | 3.15 × 10−11 | 3.34 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 |
F25 | 3.14 × 10−11 | 3.18 × 10−11 | 3.32 × 10−11 | 3.61 × 10−11 | 3.07 × 10−11 | 3.08 × 10−11 | 3.25 × 10−11 | 3.02 × 10−11 | 3.32 × 10−06 |
F26 | 3.36 × 10−11 | NaN | 3.52 × 10−11 | 3.58 × 10−11 | 3.35 × 10−08 | 3.07 × 10−11 | 3.15 × 10−11 | 3.02 × 10−11 | 6.53 × 10−08 |
F27 | 3.58 × 10−11 | 7.04 × 10−07 | 3.24 × 10−11 | 3.17 × 10−11 | 3.15 × 10−11 | 3.08 × 10−11 | 3.09 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 |
F28 | 3.45 × 10−11 | 3.71 × 10−11 | 3.25 × 10−11 | 3.36 × 10−11 | 3.03 × 10−11 | 3.69 × 10−11 | 3.25 × 10−11 | 3.02 × 10−11 | 1.11 × 10−06 |
F29 | 3.26 × 10−11 | 1.17 × 10−09 | 3.30 × 10−11 | 3.15 × 10−11 | 1.29 × 10−09 | 3.15 × 10−11 | 3.17 × 10−11 | 3.02 × 10−11 | 3.02 × 10−11 |
F30 | 3.27 × 10−11 | NaN | 3.10 × 10−11 | 3.39 × 10−11 | 1.07 × 10−09 | 3.44 × 10−11 | 3.09 × 10−11 | 3.02 × 10−11 | 4.98 × 10−11 |
+/=/− | 29/0/0 | 25/2/2 | 28/0/1 | 29/0/0 | 29/0/0 | 29/0/0 | 28/0/1 | 28/0/1 | 20/1/5 |
Test Functions and Dimensions | Algorithm and the Friedman Test | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CEC2017-30D | Algorithm | TROA | PIO | BWO | COA | SCA | WOA | BOA | SCSO | GJO | DHTROA |
Friedman | 7.9833 | 3.6223 | 5.1056 | 5.1556 | 2.4778 | 5.2611 | 5.133 | 5.014 | 2.365 | 1.261133 | |
Rankings | 10 | 4 | 6 | 8 | 3 | 9 | 7 | 5 | 2 | 1 | |
CEC2017-50D | Algorithm | TROA | PIO | BWO | COA | SCA | WOA | BOA | SCSO | GJO | DHTROA |
Friedman | 7.9952 | 4.2762 | 4.8287 | 5.1381 | 2.519 | 4.8333 | 5.243 | 5.112 | 2.324 | 1.166657 | |
Rankings | 10 | 4 | 5 | 8 | 3 | 6 | 9 | 7 | 2 | 1 | |
CEC2017-100D | Algorithm | TROA | PIO | BWO | COA | SCA | WOA | BOA | SCSO | GJO | DHTROA |
Friedman | 8 | 4.6762 | 4.3429 | 5.0143 | 3.2143 | 4.5333 | 4.762 | 5.5 | 3.5 | 1.457157 | |
Rankings | 8 | 6 | 4 | 8 | 2 | 5 | 7 | 9 | 3 | 1 |
Algorithm | x1 | x2 | Best Value |
---|---|---|---|
TROA | 0.850323757739000 | 0.274546657842679 | 272.269057261071 |
PIO | 0.805081461941066 | 0.366256436265370 | 264.337068084980 |
BWO | 0.827363185662217 | 0.326371904343559 | 266.650838068699 |
COA | 0.803226648392775 | 0.373623677955653 | 264.549171758875 |
SCA | 0.761963264772358 | 0.491574454028493 | 265.565913455682 |
WOA | 0.781402569514095 | 0.429311549466872 | 263.945177242691 |
SCSO | 0.912568756000840 | 0.142027122161806 | 272.316134483047 |
GJO | 0.784703014132638 | 0.420498605888086 | 263.997389593093 |
BOA | 0.886095245504293 | 0.206756431700623 | 271.301225919360 |
DHTROA | 0.787966661765593 | 0.410267359754543 | 263.897363928806 |
Algorithm | x1 | x2 | x3 | Best Value |
---|---|---|---|---|
TROA | 0.0600066162566129 | 0.551577528370842 | 6.11798845940782 | 0.0436024884735638 |
PIO | 0.0613921298444036 | 0.613287450027557 | 7.09985978406296 | 0.0210341118467281 |
BWO | 0.0573651342801321 | 0.508969888196512 | 8.85944860038079 | 0.0181884584524484 |
COA | 0.0656728003685128 | 0.795487166206592 | 3.21661858194215 | 0.0178975396220948 |
SCA | 0.0529927785292291 | 0.368998816856133 | 12.8483405065641 | 0.0153863736303637 |
WOA | 0.0589317144007403 | 0.557290321105191 | 5.18043654892713 | 0.0138973021593928 |
SCSO | 0.0650947195477756 | 0.745976939342651 | 3.38184843256667 | 0.0177886915766670 |
GJO | 0.0641416987476494 | 0.704871982427697 | 4.13412810417149 | 0.0170117262438649 |
BOA | 0.0603740211014564 | 0.601506295699353 | 5.08659064093931 | 0.0155372927443572 |
DHTROA | 0.05 | 0.317420101691764 | 14.0311897020010 | 0.0127215546636228 |
Algorithm | x1 | x2 | x3 | x4 | Best Value |
---|---|---|---|---|---|
TROA | 0.880360428252 | 0.5253950135631 | 44.885524707019 | 146.884967577443 | 213996.121152876 |
PIO | 1.674067802768 | 1.5671245767043 | 58.023800268951 | 62.2975162649959 | 16926.8206217292 |
BWO | 1.053172153432 | 0.5969853437327 | 48.404596340805 | 120.659511504933 | 7804.41286049972 |
COA | 6.076137611937 | 12.648277825034 | 57.777933616884 | 46.7430369336998 | 133076.457341952 |
SCA | 1.505142346545 | 0.7559612901634 | 66.874540217955 | 10 | 9715.41458764553 |
WOA | 0.990225618480 | 5.4246847826218 | 51.302562705075 | 88.3424951888734 | 29452.4192178675 |
SCSO | 1.393644646571 | 0.8438368334468 | 66.177839137711 | 10 | 9756.75609340460 |
GJO | 1.346414512347 | 0.6710741070787 | 65.361954726837 | 10 | 8053.71002187180 |
BOA | 7.283491804949 | 11.448241331387 | 62.399289473158 | 31.0797861174508 | 158946.824951221 |
DHTROA | 0.992705639901 | 0.4825984626159 | 50.576108055597 | 95.9923139377064 | 6482.99953021331 |
Algorithm | x1 | x2 | x3 | x4 | Best Value |
---|---|---|---|---|---|
TROA | 0.152141749821 | 7.2922226019685 | 9.7700760415338 | 0.26475072470929 | 1.01665084239197 × 1098 |
PIO | 0.282469746769 | 2.5698459678450 | 8.1248677279205 | 0.30585568548258 | 2.20752627670167 |
BWO | 0.205785155412 | 7.7679588218783 | 6.2409625618932 | 0.46410825286124 | 3.39675847069489 |
COA | 0.543556206221 | 1.7443200854298 | 5.7012059867820 | 0.54570031599768 | 2.92589834594155 |
SCA | 0.205565733257 | 3.4796961746901 | 10 | 0.22499416711049 | 2.05452363958243 |
WOA | 0.395309660019 | 2.4455343919615 | 5.9208647643372 | 0.47928327878681 | 2.66740891765576 |
SCSO | 1.054112574053 | 1.3456335491181 | 3.8009576118197 | 1.17155663442915 | 4.93934936330461 |
GJO | 0.189534700137 | 4.2982040885039 | 9.8881866868027 | 0.20274766880449 | 1.93545873092861 |
BOA | 0.596839754212 | 8.6043576807063 | 9.7692864605900 | 0.21912881785695 | 6.52461677901373 × 10100 |
DHTROA | 0.20571 | 3.47125 | 9.03658 | 0.20574 | 1.72261067471479 |
Design Variables | TROA | PIO | BWO | COA | SCA | WOA | SCSO | GJO | BOA | DHTROA |
---|---|---|---|---|---|---|---|---|---|---|
x1 | 12.2912 | 5.3044 | 4.6363 | 5.8664 | 6.8214 | 11.1515 | 6.2948 | 6.5916 | 5.9057 | 6.235754 |
x2 | 9.3318 | 5.4392 | 5.2997 | 4.5346 | 4.1855 | 3.5205 | 4.9815 | 5.5711 | 4.3816 | 4.840602 |
x3 | 4.1639 | 6.4788 | 6.9036 | 4.5279 | 5.1686 | 5.9717 | 4.3660 | 4.4975 | 5.9008 | 4.404145 |
x4 | 4.2709 | 3.8180 | 5.7310 | 4.4233 | 4.4627 | 7.4006 | 6.2253 | 4.1374 | 6.3404 | 3.758260 |
x5 | 1.2259 | 3.0911 | 3.9681 | 4.4843 | 2.5186 | 11.8035 | 4.3459 | 1.6353 | 2.6701 | 2.468020 |
Best value | 9.7588 | 1.5058 | 1.6561 | 1.4874 | 1.4451 | 2.4865 | 1.6357 | 1.3998 | 1.5724 | 1.349974 |
Design Variables | TROA | PIO | BWO | COA | SCA | WOA | SCSO | GJO | BOA | DHTROA |
---|---|---|---|---|---|---|---|---|---|---|
x1 | 3.44 | 3.58 | 3.61 | 3.59 | 3.6 | 3.5001 | 3.6 | 3.6 | 3.53 | 3.5031 |
x2 | 0.71 | 0.71 | 0.71 | 0.71 | 0.7 | 0.7 | 0.7 | 0.71 | 0.76 | 0.7 |
x3 | 18.14 | 19.14 | 17.17 | 17 | 17.01 | 26.65 | 17 | 17 | 17.17 | 17 |
x4 | 8.02 | 7.99 | 8.31 | 7.31 | 8.3 | 8.03 | 7.3 | 8.3 | 7.61 | 7.3 |
x5 | 7.86 | 7.99 | 8.31 | 8.28 | 8.11 | 8.03 | 8.3 | 8.3 | 8.27 | 7.8081 |
x6 | 3.64 | 3.70 | 3.9 | 3.35 | 3.743 | 3.79 | 3.68 | 3.71 | 3.82 | 3.3512 |
x7 | 5.42 | 5.42 | 5.38 | 5.49 | 5.32 | 5.29 | 5.5 | 5.5 | 5.38 | 5.2869 |
Best value | 4.63 × 1097 | 3677.6998 | 3280.1002 | 3176.6278 | 3095.3469 | 5222.5731 | 1.89 × 1097 | 3331.9921 | 5.11 × 1098 | 2998.1378 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Shi, H.; Wang, B.; Ma, C.; Li, Q. A Dynamic Hierarchical Improved Tyrannosaurus Optimization Algorithm with Hybrid Topology Structure. Mathematics 2024, 12, 1459. https://doi.org/10.3390/math12101459
Zhang S, Shi H, Wang B, Ma C, Li Q. A Dynamic Hierarchical Improved Tyrannosaurus Optimization Algorithm with Hybrid Topology Structure. Mathematics. 2024; 12(10):1459. https://doi.org/10.3390/math12101459
Chicago/Turabian StyleZhang, Shihong, Hu Shi, Baizhong Wang, Chunlu Ma, and Qinghua Li. 2024. "A Dynamic Hierarchical Improved Tyrannosaurus Optimization Algorithm with Hybrid Topology Structure" Mathematics 12, no. 10: 1459. https://doi.org/10.3390/math12101459
APA StyleZhang, S., Shi, H., Wang, B., Ma, C., & Li, Q. (2024). A Dynamic Hierarchical Improved Tyrannosaurus Optimization Algorithm with Hybrid Topology Structure. Mathematics, 12(10), 1459. https://doi.org/10.3390/math12101459