A Hybrid Chebyshev Pseudo-Spectral Finite-Difference Time-Domain Method for Numerical Simulation of 2D Acoustic Wave Propagation
Abstract
1. Introduction
2. Statement of the Geophysical Problem
3. Methodology
3.1. Discretization Scheme in the Spatial Domain
3.2. Chebyshev Differentiation Matrix in the Spatial Domain
3.3. CPS-FDTD Algorithm for 2D Acoustic Wave Equation
4. Numerical Experiments
4.1. Example 1
4.2. Example 2
4.3. Example 3
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
Appendix A. MATLAB Program for 2D Acoustic Modelling
References
- Cordova, L.J.; Rojas, O.; Otero, B.; Castillo, J. Compact finite difference modeling of 2-D acoustic wave propagation. J. Comput. Appl. Math. 2016, 295, 83–91. [Google Scholar] [CrossRef]
- Liao, W.; Yong, P.; Dastour, H.; Huang, J. Efficient and accurate numerical simulation of acoustic wave propagation in a 2D heterogeneous media. Appl. Math. Comput. 2018, 321, 385–400. [Google Scholar] [CrossRef]
- Solano-Feo, F.; Guevara-Jordan, J.M.; Rojas, O.; Otero, B.; Rodriguez, R. A new mimetic scheme for the acoustic wave equation. J. Comput. Appl. Math. 2016, 295, 2–12. [Google Scholar] [CrossRef]
- Malkoti, A.; Vedanti, N.; Tiwari, R.K. A highly efficient implicit finite difference scheme for acoustic wave propagation. J. Appl. Geophys. 2019, 161, 204–215. [Google Scholar] [CrossRef]
- Wang, E.; Liu, Y.; Sen, M.K. Effective finite-difference modelling methods with 2-D acoustic wave equation using a combination of cross and rhombus stencils. Geophys. J. Int. 2016, 206, 1933–1958. [Google Scholar] [CrossRef]
- Lei, W.; Liu, Y.; Li, G.; Zhu, S.; Chen, G.; Li, C. 2D frequency-domain finite-difference acoustic wave modeling using optimized perfectly matched layers. Geophysics 2023, 88, F1–F13. [Google Scholar] [CrossRef]
- Xu, W.; Gao, J. Adaptive 9-point frequency-domain finite difference scheme for wavefield modeling of 2D acoustic wave equation. J. Geophys. Eng. 2018, 15, 1432–1445. [Google Scholar] [CrossRef]
- Aimakov, N.; Tanner, G.; Chronopoulos, D. A wave finite element approach for modelling wave transmission through laminated plate junctions. Sci. Rep. 2022, 1852, 937–951. [Google Scholar] [CrossRef]
- Gao, K.; Fu, S.; Chung, E.T. A high-order multiscale finite-element method for time-domain acoustic-wave modeling. J. Comput. Phys. 2018, 360, 120–136. [Google Scholar] [CrossRef]
- Hermann, V.; Kaser, M.; Castro, C.E. Non-conforming hybrid meshes for efficient 2-D wave propagation using the Discontinuous Galerkin Method. Geophys. J. Int. 2011, 184, 746–758. [Google Scholar] [CrossRef]
- Moczo, P.; Kristek, J.; Galis, M.; Chaljub, E.; Etienne, V. 3-D finite-difference, finite-element, discontinuous-Galerkin and spectral-element schemes analysed for their accuracy with respect to P-wave to S-wave speed ratio. Geophys. J. Int. 2011, 187, 1645–1667. [Google Scholar] [CrossRef]
- Reboul, S.; Perrey-Debain, E.; Zerbib, N.; Moreau, S. A 2D frequency-domain finite element formulation for solving the wave equation in the presence of rotating obstacles. Wave Motion 2023, 121, 103171. [Google Scholar] [CrossRef]
- Fornberg, B. The pseudospectral method: Comparisons with finite difference for the elastic wave equation. Geophysics 1987, 52, 483–501. [Google Scholar] [CrossRef]
- Liu, Q.H. The pseudospectral time-domain (PSTD) algorithm for acoustic waves in absorptive media. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1998, 45, 1044–1055. [Google Scholar] [CrossRef] [PubMed]
- Treeby, B.E.; Wise, E.S.; Kuklis, F.; Jaros, J.; Cox, B.T. Nonlinear ultrasound simulation in an axisymmetric coordinate system using a k-space pseudospectral method. J. Acoust. Soc. Am. 2020, 148, 2288–2300. [Google Scholar] [CrossRef] [PubMed]
- Komatitsch, D.; Tromp, J. Introduction to the spectral element method for three-dimensional seismic wave propagation. Geophys. J. Int. 1999, 139, 806–822. [Google Scholar] [CrossRef]
- Komatitsch, D.; Tromp, J. Spectral-element simulations of global seismic wave propagation. Geophys. J. Int. 2002, 149, 390–412. [Google Scholar] [CrossRef]
- Zhu, C.; Qin, G.; Zhang, J. Implicit Chebyshev spectral element method for acoustics wave equations. Finite Elem. Anal. Des. 2011, 47, 184–194. [Google Scholar] [CrossRef]
- Zou, P.; Cheng, J. Pseudo-spectral method using rotated staggered grid for elastic wave propagation in 3D arbitrary anisotropic media. Geophys. Prospect. 2018, 66, 47–61. [Google Scholar] [CrossRef]
- Trefethen, L.N. Spectral Methods in MATLAB; SIAM: Philadelphia, PA, USA, 2000. [Google Scholar]
- Kosloff, D.D.; Baysal, E. Forward modeling by a Fourier method. Geophysics 1982, 47, 1402–1412. [Google Scholar] [CrossRef]
- Tong, X.; Sun, Y.; Guo, R. A Chebyshev pseudo-spectral approach for simulating magnetotelluric TM-mode responses on 2D structures. J. Appl. Geophys. 2020, 179, 104085. [Google Scholar] [CrossRef]
- Raggio, G. A pseudo spectral Chebyshev scheme for forward acoustic modeling. ZAMM J. Appl. Math. Mech. 1986, 66, 545–553. [Google Scholar] [CrossRef]
- Eisinberg, A.; Fedele, G. Discrete orthogonal polynomials on Gauss-Lobatto Chebyshev nodes. J. Approx. Theory 2007, 144, 238–246. [Google Scholar] [CrossRef]
- Odeyemi, T.; Mohammadian, A.; Seidou, O. Application of the Chebyshev pseudospectral method to van der Waals fluids. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 3499–3507. [Google Scholar] [CrossRef]
- Baltensperger, R.; Berrut, J.P. The errors in calculating the pseudospectral differentiation matrices for Chebyshev-Gauss_Lobatto points. Comput. Math. Appl. 1999, 37, 41–48. [Google Scholar] [CrossRef]
- Jiwari, R.; Pandit, S.; Mittal, R.C. A differential quadrature algorithm to solve the two dimensional linear hyperbolic telegraph equation with Dirichlet and Neumann boundary conditions. Appl. Math. Comput. 2012, 218, 7279–7294. [Google Scholar] [CrossRef]
- Kumar, V.; Jiwari, R.; Gupta, R.K. Numerical simulation of two dimensional quasilinear hyperbolic equations by polynomial differential quadrature method. Eng. Comput. 2013, 30, 892–909. [Google Scholar] [CrossRef]
- Pandit, S.; Kunar, M.; Tiwari, S. Numerical Simulation of Second-Order One Dimensional Hyperbolic Telegraph Equation. Comput. Phys. Commun. 2015, 187, 83–90. [Google Scholar] [CrossRef]
- Gao, Y.; Song, H.; Zhang, J.; Yao, Z. Comparison of artificial absorbing boundaries for acoustic wave equation modelling. Explor. Geophys. 2017, 48, 76–93. [Google Scholar] [CrossRef]
- Liu, Y.; Sen, M.K. A hybrid scheme for absorbing edge reflections in numerical modeling of wave propagation. Geophysics 2010, 75, A1–A6. [Google Scholar] [CrossRef]
- Narayannan, T.V.; Yoder, P.D. Perfectly matched layer boundary conditions for quantum phase space transport. Phys. Lett. A 2007, 367, 288–290. [Google Scholar] [CrossRef]
- Clayton, R.; Engquist, B. Absorbing boundary conditions for acoustic and elastic wave equations. Bull. Seism. Soc. Am. 1977, 67, 1529–1540. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tong, X.; Sun, Y. A Hybrid Chebyshev Pseudo-Spectral Finite-Difference Time-Domain Method for Numerical Simulation of 2D Acoustic Wave Propagation. Mathematics 2024, 12, 117. https://doi.org/10.3390/math12010117
Tong X, Sun Y. A Hybrid Chebyshev Pseudo-Spectral Finite-Difference Time-Domain Method for Numerical Simulation of 2D Acoustic Wave Propagation. Mathematics. 2024; 12(1):117. https://doi.org/10.3390/math12010117
Chicago/Turabian StyleTong, Xiaozhong, and Ya Sun. 2024. "A Hybrid Chebyshev Pseudo-Spectral Finite-Difference Time-Domain Method for Numerical Simulation of 2D Acoustic Wave Propagation" Mathematics 12, no. 1: 117. https://doi.org/10.3390/math12010117
APA StyleTong, X., & Sun, Y. (2024). A Hybrid Chebyshev Pseudo-Spectral Finite-Difference Time-Domain Method for Numerical Simulation of 2D Acoustic Wave Propagation. Mathematics, 12(1), 117. https://doi.org/10.3390/math12010117