Sharp Coefficient Bounds for a New Subclass of Starlike Functions of Complex Order γ Associated with Cardioid Domain
Abstract
1. Introduction and Preliminaries
2. Set of Lemmas
3. Main Results
3.1. Inverse Coefficients
3.2. Logarithmic Coefficients
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fekete, M.; Szegö, G. Eine bemerkung uber ungerade schlichte funktionen. J. Lond. Math. Soc. 1933, 8, 85–89. [Google Scholar] [CrossRef]
- Bieberbach, L. Über dié koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln. Sitzber. Preuss. Akad. Wiss. 1916, 138, 940–955. [Google Scholar]
- De Branges, L. A proof of the Bieberbach conjecture. Acta Math. 1985, 154, 137–152. [Google Scholar] [CrossRef]
- Ma, W.C.; Minda, D. A unified treatment of some special classes of univalent functions. In Proceedings of the Conference on Complex Analysis; International Press of Boston: Tianjin, China, 1992; pp. 157–169. [Google Scholar]
- Janowski, W. Extremal problems for a family of functions with positive real part and for some related families. Ann. Pol. Math. 1970, 23, 159–177. [Google Scholar] [CrossRef]
- Sokół, J.; Stankiewicz, J. Radius of convexity of some subclasses of strongly starlike functions. Zesz. Nauk. Politech. Rzesz. Mat. Fiz. 1996, 19, 101–105. [Google Scholar]
- Cho, N.E.; Kumar, V.; Kumar, S.S.; Ravichandran, V. Radius problems for starlike functions associated with the sine function. Bull. Iran. Math. Soc. 2019, 45, 213–232. [Google Scholar] [CrossRef]
- Mendiratta, R.; Nagpal, S.; Ravichandran, V. On a subclass of strongly starlike functions associated with exponential function. Bull. Malays. Math. Sci. Soc. 2015, 38, 365–386. [Google Scholar] [CrossRef]
- Ullah, K.; Srivastava, H.M.; Rafiq, A.; Arif, M.; Arjika, S. A study of sharp coefficient bounds for a new subfamily of starlike functions. J. Inequalities Appl. 2021, 2021, 194. [Google Scholar] [CrossRef]
- Nave, O. Modification of semi-analytical method applied system of ODE. Mod. Appl. Sci. 2020, 4, 75–81. [Google Scholar] [CrossRef]
- Shi, L.; Srivastava, H.M.; Arif, M.; Hussain, S.; Khan, H. An investigation of the third Hankel determinant problem for certain subfamilies of univalent functions involving the exponential function. Symmetry 2019, 11, 598. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Khan, N.; Darus, M.; Khan, S.; Ahmad, Q.Z.; Hussain, S. Fekete-Szegö type problems and their applications for a subclass of q-starlike functions with respect to symmetrical points. Mathematics 2020, 8, 842. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Khan, B.; Khan, N.; Tahir, M.; Ahmad, S.; Khan, N. Upper bound of the third Hankel determinant for a subclass of q-starlike functions associated with the q-exponential function. Bull. Sci. Math. 2021, 167, 102942. [Google Scholar] [CrossRef]
- Barukab, O.; Arif, M.; Abbas, M.; Khan, S.K. Sharp bounds of the coefficient results for the family of bounded turning functions associated with petal shaped domain. J. Funct. Spaces 2021, 5535629. [Google Scholar] [CrossRef]
- Swamy, S.R.; Frasin, B.A.; Aldawish, I. Fekete–Szegö functional problem for a special family of m-fold symmetric bi-univalent functions. Mathematics 2022, 10, 1165. [Google Scholar] [CrossRef]
- Oros, G.I.; Cotîrlă, L.I. Coefficient estimates and the Fekete–Szegö problem for new classes of m-fold symmetric bi-univalent functions. Mathematics 2022, 10, 129. [Google Scholar] [CrossRef]
- Wang, Z.G.; Raza, M.; Arif, M.; Ahmad, K. On the third and fourth Hankel determinants of a subclass of analytic functions. Bull. Malays. Math. Soc. 2002, 45, 323–359. [Google Scholar] [CrossRef]
- Wang, Z.G.; Arif, M.; Ahmad, K.; Liu, Z.H.; Zainab, S.; Fayyaz, R.; Ihsan, M.; Shutawi, M. Sharp bounds of Hankel determinants for certain subclass of starlike functions. J. Appl. Anal. Comput. 2023, 13, 860–873. [Google Scholar] [CrossRef]
- Ravichandran, V.; Polatoglu, Y.; Bolcal, M.; En, A.S. Certain subclasses of starlike and convex functions of complex order. Hacet. J. Math. Stat. 2005, 34, 9–15. [Google Scholar]
- Goodman, A.W. Univalent Functions; Mariner Publishing Company: Tampa, FL, USA, 1983; Volume I. [Google Scholar]
- Janowski, W. Some extremal problems for certain families of analytic functions. Ann. Pol. Math. 1973, 28, 297–326. [Google Scholar] [CrossRef]
- Noor, K.I.; Malik, S.N. On coefficient inequalities of functions associated with conic domains. Comput. Math. Appl. 2011, 62, 2209–2217. [Google Scholar] [CrossRef]
- Kanas, S.; Wiśniowska, A. Conic regions and k-uniform convexity. J. Comput. Appl. Math. 1999, 105, 327–336. [Google Scholar] [CrossRef]
- Kanas, S.; Wiśniowska, A. Conic domains and starlike functions. Rev. Roum. Math. Pures Appl. 2000, 45, 647–657. [Google Scholar]
- Paprocki, E.; Sokół, J. The extremal problems in some subclass of strongly starlike functions. Folia Scient. Univ. Techn. Resoviensis 1996, 157, 89–94. [Google Scholar]
- Noor, K.I.; Malik, S.N. On a new class of analytic functions associated with conic domain. Comput. Math. Appl. 2011, 62, 367–375. [Google Scholar] [CrossRef]
- Dziok, J.; Raina, R.K.; Sokół, J. Certain results for a class of convex functions related to shell-like curve connected with Fibonacci numbers. Comput. Math. Appl. 2011, 61, 2605–2613. [Google Scholar]
- Dziok, J.; Raina, R.K.; Sokół, J. On α-convex functions related to shell-like functions connected with Fibonacci numbers. Appl. Math. Comput. 2011, 218, 996–1002. [Google Scholar] [CrossRef]
- Dziok, J.; Raina, R.K.; Sokół, J. On a class of starlike functions related to a shell-like curve connected with Fibonacci numbers. Math. Comput. Model. 2013, 57, 1203–1211. [Google Scholar] [CrossRef]
- Sokół, J. On starlike functions connected with Fibonacci numbers. Folia Scient. Univ. Tech. Resoviensis 1999, 175, 111–116. [Google Scholar]
- Malik, S.N.; Raza, M.; Sokół, J.; Zainab, S. Analytic functions associated with cardioid domain. Turk. J. Math. 2020, 44, 1127–1136. [Google Scholar] [CrossRef]
- Zainab, S.; Raza, M.; Sokół, J.; Malik, S.N. On starlike functions associated with cardiod domain. Nouv. Ser. Tome 2021, 109, 95–107. [Google Scholar]
- Netanyahu, E. The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in z<1. Arch. Ration. March. Anal. 1967, 32, 100–112. [Google Scholar]
- Rogosinski, W. On the coefficients of subordinate functions. Proc. Lond. Math. Soc. (Ser. 2) 1943, 48, 48–82. [Google Scholar] [CrossRef]
- Raza, M.; Mushtaq, S.; Malik, S.N.; Sokół, J. Coefficient inequalities for analytic functions associated with cardioid domains. Hacet. J. Math. Stat. 2020, 49, 2017–2027. [Google Scholar] [CrossRef]
- Orhan, H.; Cotîrla, L.I. Fekete-Szegö inequalities for some certain subclass of analytic functions defined with Ruscheweyh derivative operator. Axioms 2022, 11, 560. [Google Scholar] [CrossRef]
- Wanas, A.K.; Cotîrla, L.I. Initial coefficient estimates and Fekete–Szegö inequalities for new families of bi-univalent functions governed by (p-q)-Wanas operator. Symmetry 2021, 13, 2118. [Google Scholar] [CrossRef]
- Malik, S.N.; Mahmood, S.; Raza, M.; Farman, S.; Zainab, S. Coefficient inequalities of functions associated with Petal type domains. Mathematics 2018, 6, 298. [Google Scholar] [CrossRef]
- Shafiq, M.; Srivastava, H.M.; Khan, N.; Ahmad, Q.Z.; Darus, M.; Kiran, S. An upper bound of the third Hankel determinant for a subclass of q-starlike functions associated with k-Fibonacci numbers. Symmetry 2020, 12, 1043. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Altınkaya, S.; Yalcın, S. Hankel determinant for a subclass of bi-univalent functions defined by using a symmetric q-derivative operator. Filomat 2018, 32, 503–516. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Shaikh, S.B.; Matarneh, K.; Abubaker, A.A.; Khan, M.F. Sharp Coefficient Bounds for a New Subclass of Starlike Functions of Complex Order γ Associated with Cardioid Domain. Mathematics 2023, 11, 2017. https://doi.org/10.3390/math11092017
Al-Shaikh SB, Matarneh K, Abubaker AA, Khan MF. Sharp Coefficient Bounds for a New Subclass of Starlike Functions of Complex Order γ Associated with Cardioid Domain. Mathematics. 2023; 11(9):2017. https://doi.org/10.3390/math11092017
Chicago/Turabian StyleAl-Shaikh, Suha B., Khaled Matarneh, Ahmad A. Abubaker, and Mohammad Faisal Khan. 2023. "Sharp Coefficient Bounds for a New Subclass of Starlike Functions of Complex Order γ Associated with Cardioid Domain" Mathematics 11, no. 9: 2017. https://doi.org/10.3390/math11092017
APA StyleAl-Shaikh, S. B., Matarneh, K., Abubaker, A. A., & Khan, M. F. (2023). Sharp Coefficient Bounds for a New Subclass of Starlike Functions of Complex Order γ Associated with Cardioid Domain. Mathematics, 11(9), 2017. https://doi.org/10.3390/math11092017