Graph-Regularized, Sparsity-Constrained Non-Negative Matrix Factorization with Earth Mover’s Distance Metric
Abstract
:1. Introduction
2. Related Work
2.1. EMD
2.2. EMDNMF
3. GSNMF-EMD
3.1. The Objective Function
3.2. Multiplicative Update Rules
Algorithm 1 GSNMF-EMD algorithm. |
|
3.3. Convergence Analysis
4. Experiments
4.1. Datasets
- COIL20 (https://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php, accessed on: 26 June 2022 ): The COIL20 dataset contains 1440 gray images of 20 objects—that is, 72 images of each object acquired from different angles. The images we use here are limited to a size of .
- MNIST (http://yann.lecun.com/exdb/mnist/, accessed on: 26 June 2022): The MNIST handwritten digit dataset comes from Yann LeCun’s web page and contains a training set of examples and a test set of examples. The size of the images we used here was .
4.2. Evaluation Metric
4.3. Performance Evaluations and Comparisons
- K-means: Canonical K-means clustering method (K-means in short).
- NMF: [45]: The original NMF is considered to be the baseline algorithm and only imposes non-negative constraints on the two factor matrices.
- GNMF: [42]: Graph-regularized NMF (GNMF in short) with Euclidean distance. It adds graph-regularization constraints to NMF, taking into account information about the geometric structure of the data space. The regularization parameter is set to 10.
- EMDNMF: [30]: NMF with EMD (EMDNMF in short). We set the and to 100 and 0.1, respectively; meanwhile, we used the 2D distance of pixels’ location of the image as the ground metric.
- GSNMF-EMD: Graph-regularized sparsity-constrained NMF with the Earth mover’s distance metric (GSNMF-EMD in short). We set the , , , and to 100, 0.1, 20, and 1.8, respectively. Meanwhile, we use the 2D distances among pixels’ locations in the image as the ground metric.
5. Parameter Selection
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shahnaz, F.; Berry, M.W.; Pauca, V.P.; Plemmons, R.J. Document clustering using nonnegative matrix factorization. Inf. Process Manag. 2006, 42, 373–386. [Google Scholar] [CrossRef]
- Pei, X.; Wu, T.; Chen, C. Automated graph regularized projective nonnegative matrix factorization for document clustering. IEEE Trans. Cybern. 2014, 44, 1821–1831. [Google Scholar]
- Chen, Z.; Li, L.; Peng, H.; Liu, Y.; Yang, Y. Attributed community mining using joint general non-negative matrix factorization with graph Laplacian. Phys. A 2018, 495, 324–335. [Google Scholar] [CrossRef]
- Yang, J.; Yang, S.; Fu, Y.; Li, X.; Huang, T. Non-negative graph embedding. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, Anchorage, Alaska, 23–28 June 2008; pp. 1–8. [Google Scholar]
- Dai, X.; Su, X.; Zhang, W.; Xue, F.; Li, H. Robust Manhattan non-negative matrix factorization for image recovery and representation. Inf. Sci. 2020, 527, 70–87. [Google Scholar] [CrossRef]
- Li, Z.; Tang, J.; He, X. Robust structured nonnegative matrix factorization for image representation. IEEE Trans. Neural. Netw. Learn. Syst. 2017, 29, 1947–1960. [Google Scholar] [CrossRef]
- Gong, M.; Jiang, X.; Li, H.; Tan, K.C. Multiobjective sparse non-negative matrix factorization. IEEE Trans. Cybern. 2018, 49, 2941–2954. [Google Scholar] [CrossRef]
- Guan, N.; Tao, D.; Luo, Z.; Yuan, B. Online nonnegative matrix factorization with robust stochastic approximation. IEEE Trans. Neural. Netw. Learn. Syst. 2012, 23, 1087–1099. [Google Scholar] [CrossRef]
- Chen, Z.; Li, L.; Peng, H.; Liu, Y.; Yang, Y. A novel digital watermarking based on general non-negative matrix factorization. IEEE Trans. Multimedia 2018, 20, 1973–1986. [Google Scholar] [CrossRef]
- Chen, Z.; Li, L.; Peng, H.; Liu, Y.; Zhu, H.; Yang, Y. Sparse general non-negative matrix factorization based on left semi-tensor product. IEEE Access. 2019, 7, 81599–81611. [Google Scholar] [CrossRef]
- Fu, X.; Huang, K.; Sidiropoulos, N.D.; Ma, W.K. Nonnegative matrix factorization for signal and data analytics: Identifiability, algorithms, and applications. IEEE Signal. Proc. Mag. 2019, 36, 59–80. [Google Scholar] [CrossRef]
- Vaswani, N.; Bouwmans, T.; Javed, S.; Narayanamurthy, P. Robust subspace learning: Robust PCA, robust subspace tracking, and robust subspace recovery. IEEE Signal. Proc. Mag. 2018, 35, 32–55. [Google Scholar] [CrossRef]
- Hoyer, P.O. Nonnegative matrix factorization with sparseness constraints. J. Mach. Learn. Res. 2004, 5, 1457–1469. [Google Scholar]
- Qian, W.; Hong, B.; Cai, D.; He, X.; Li, X. Non-Negative Matrix Factorization with Sinkhorn Distance. In Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16), New York, NY, USA, 9–15 July 2016; pp. 1960–1966. [Google Scholar]
- He, W.; Zhang, H.; Zhang, L. Sparsity-regularized robust non-negative matrix factorization for hyperspectral unmixing. IEEE J. Sel. Top. Appl. Earth. Obs. Remote. Sens. 2016, 9, 4267–4279. [Google Scholar] [CrossRef]
- Kong, D.; Ding, C.; Huang, H. Robust nonnegative matrix factorization using l21-norm. In Proceedings of the 20th ACM International Conference on Information and Knowledge Management, Glasgow, UK, 24–28 October 2011; pp. 673–682. [Google Scholar]
- Huang, Q.; Yin, X.; Chen, S.; Wang, Y.; Chen, B. Robust nonnegative matrix factorization with structure regularization. Neurocomputing 2020, 412, 72–90. [Google Scholar] [CrossRef]
- Pan, J.; Ng, M.K. Orthogonal nonnegative matrix factorization by sparsity and nuclear norm optimization. SIAM J. Matrix Anal. Appl. 2018, 39, 856–875. [Google Scholar] [CrossRef]
- Luo, X.; Zhou, M.; Xia, Y.; Zhu, Q. An efficient non-negative matrix-factorization-based approach to collaborative filtering for recommender systems. IEEE Trans. Industr. Inform. 2014, 10, 1273–1284. [Google Scholar]
- Sun, H.C.; Yang, J. The Generalization of Non-Negative Matrix Factorization Based on Algorithmic Stability. Electronics 2023, 12, 1147. [Google Scholar] [CrossRef]
- Venkatesan, R.C.; Plastino, A. Deformed statistics Kullback—Leibler divergence minimization within a scaled Bregman framework. Phys. Lett. A 2011, 375, 4237–4243. [Google Scholar] [CrossRef]
- He, R.; Zheng, W.S.; Hu, B.G. Maximum correntropy criterion for robust face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 33, 1561–1576. [Google Scholar]
- Wang, J.J.Y.; Wang, X.; Gao, X. Non-negative matrix factorization by maximizing correntropy for cancer clustering. BMC Bioinform. 2013, 14, 1–11. [Google Scholar] [CrossRef]
- Wang, Y.; Pan, C.; Xiang, S.; Zhu, F. Robust hyperspectral unmixing with correntropy-based metric. IEEE Trans. Image Process. 2015, 24, 4027–4040. [Google Scholar] [CrossRef]
- Peng, S.; Ser, W.; Lin, Z.; Chen, B. Robust sparse nonnegative matrix factorization based on maximum correntropy criterion. In Proceedings of the IEEE International Symposium on Circuits and Systems, Florence, Italy, 27–30 May 2018; pp. 1–5. [Google Scholar]
- Yu, N.; Wu, M.J.; Liu, J.X.; Zheng, C.H.; Xu, Y. Correntropy-based hypergraph regularized NMF for clustering and feature selection on multi-cancer integrated data. IEEE Trans. Cybern. 2020, 51, 3952–3963. [Google Scholar] [CrossRef] [PubMed]
- Pele, O.; Werman, M. Fast and robust earth mover’s distances. In Proceedings of the 2009 IEEE 12th International Conference on Computer Vision, Kyoto, Japan, 29 September–2 October 2009; pp. 460–467. [Google Scholar]
- Ling, H.; Okada, K. An efficient earth mover’s distance algorithm for robust histogram comparison. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29, 840–853. [Google Scholar] [CrossRef]
- Rubner, Y.; Tomasi, C.; Guibas, L.J. The earth mover’s distance as a metric for image retrieval. Int. J. Comput. Vision. 2000, 40, 99–121. [Google Scholar] [CrossRef]
- Sandler, R.; Lindenbaum, M. Nonnegative matrix factorization with earth mover’s distance metric. In Proceedings of the Computer Vision and Pattern Recognition Conference, Miami, FL, USA, 20–25 June 2009; pp. 1873–1880. [Google Scholar]
- Sandler, R.; Lindenbaum, M. Nonnegative matrix factorization with earth mover’s distance metric for image analysis. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33, 1590–1602. [Google Scholar] [CrossRef]
- Atasu, K.; Mittelholzer, T. Linear-complexity data-parallel earth mover’s distance approximations. ICML 2019, 97, 364–373. [Google Scholar]
- Qu, Z.W.; Yang, J.C.; Lang, Y.S.; Wang, Y.J.; Han, X.M.; Guo, X.Y. Earth Mover Distance based detection of false data injection attacks in smart grids. Energies 2022, 15, 1733. [Google Scholar] [CrossRef]
- Lu, X.; Wu, H.; Yuan, Y.; Yan, P.; Li, X. Manifold regularized sparse NMF for hyperspectral unmixing. IEEE Trans. Geosci. Remote 2012, 51, 2815–2826. [Google Scholar] [CrossRef]
- Qian, Y.; Jia, S.; Zhou, J.; Robles-Kelly, A. Hyperspectral unmixing via L1/2 sparsity-constrained nonnegative matrix factorization. IEEE Trans. Geosci. Remote 2011, 49, 4282–4297. [Google Scholar] [CrossRef]
- Xu, Z.B.; Zhang, H.; Wang, Y.; Xu, Y.; Yong, L. L1/2 regularizer. Sci. China Inf. Sci. 2010, 53, 1159–1169. [Google Scholar] [CrossRef]
- Wang, W.; Qian, Y.; Tang, Y.Y. Hypergraph-regularized sparse NMF for hyperspectral unmixing. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. 2016, 9, 681–694. [Google Scholar] [CrossRef]
- Bioucas-Dias, J.M.; Plaza, A.; Dobigeon, N.; Parente, M.; Du, Q.; Gader, P.; Chanussot, J. Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. 2012, 5, 354–379. [Google Scholar] [CrossRef]
- Werman, M.; Peleg, S.; Rosenfeld, A. A distance metric for multidimensional histograms. Comput. Vis. Image. Underst. 1985, 32, 328–336. [Google Scholar] [CrossRef]
- Cuturi, M. Sinkhorn distances: Lightspeed computation of optimal transport. Proc. Adv. Neural Inf. Process. Syst. 2013, 26, 2292–2300. [Google Scholar]
- Frogner, C.; Zhang, C.; Mobahi, H.; Araya, M.; Poggio, T.A. Learning with a Wasserstein loss. Proc. Adv. Neural Inf. Process. Syst. 2015, 28, 2044–2052. [Google Scholar]
- Cai, D.; He, X.; Han, J.; Huang, T.S. Graph regularized nonnegative matrix factorization for data representation. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 33, 1548–1560. [Google Scholar]
- Chung, F.R. Spectral Graph Theory; American Mathematical Society: Providence, RI, USA, 1997. [Google Scholar]
- Belkin, M.; Niyogi, P. Laplacian eigenmaps and spectral techniques for embedding and clustering. In Proceedings of the Advances in Neural Information Processing Systems, Denver, CO, USA, 3–6 November 2001; Volume 14, pp. 585–591. [Google Scholar]
- Lee, D.; Seung, H.S. Algorithms for non-negative matrix factorization. In Proceedings of the International Conference on Neural Information Processing Systems, Denver, CO, USA, 28–30 November 2000; Volume 13, pp. 556–562. [Google Scholar]
Data Sets | Size | Features | Classes |
---|---|---|---|
COIL20 | 1440 | 1024 | 20 |
MNIST | 70,000 | 784 | 10 |
k | Accuracy (%) | Normalized Mutual Information (%) | ||||||||
K-Means | NMF | GNMF | EMD-NMF | GSNMF-EMD | K-Means | NMF | GNMF | EMD-NMF | GSNMF-EMD | |
4 | 53.819 | 52.083 | 67.361 | 54.514 | 96.528 | 33.341 | 32.487 | 61.494 | 33.366 | 92.384 |
5 | 60.556 | 61.944 | 63.056 | 58.611 | 73.333 | 49.56 | 51.166 | 66.436 | 49.325 | 67.782 |
6 | 90.972 | 93.519 | 97.917 | 85.185 | 97.685 | 85.280 | 89.561 | 95.585 | 78.465 | 95.452 |
7 | 69.643 | 63.294 | 76.786 | 60.317 | 88.095 | 63.951 | 63.951 | 79.354 | 58.235 | 84.485 |
8 | 73.438 | 65.104 | 88.021 | 52.951 | 87.847 | 72.469 | 73.52 | 91.678 | 58.092 | 91.672 |
9 | 65.741 | 63.889 | 90.432 | 61.111 | 89.969 | 66.802 | 63.611 | 87.646 | 58.933 | 87.821 |
10 | 67.222 | 73.611 | 93.611 | 75.972 | 83.472 | 75.336 | 75.768 | 93.049 | 75.691 | 87.653 |
11 | 57.828 | 66.793 | 77.652 | 62.247 | 77.778 | 62.304 | 67.408 | 83.464 | 64.313 | 87.510 |
12 | 67.708 | 64.583 | 79.282 | 62.847 | 79.630 | 74.297 | 68.273 | 86.313 | 67.503 | 88.222 |
13 | 72.543 | 70.192 | 80.021 | 66.026 | 80.449 | 75.162 | 74.933 | 87.055 | 71.762 | 86.964 |
14 | 69.048 | 66.468 | 78.968 | 55.456 | 85.218 | 75.613 | 73.247 | 87.700 | 64.102 | 89.273 |
15 | 61.667 | 65.556 | 78.889 | 58.889 | 77.500 | 71.048 | 73.327 | 85.515 | 65.449 | 84.420 |
16 | 63.542 | 63.368 | 79.861 | 59.983 | 79.688 | 71.752 | 72.15 | 85.899 | 68.569 | 84.599 |
17 | 63.235 | 61.601 | 73.611 | 59.150 | 72.876 | 72.187 | 71.148 | 86.209 | 69.008 | 86.298 |
18 | 67.130 | 55.247 | 75.926 | 53.781 | 78.086 | 75.907 | 68.560 | 87.027 | 66.846 | 86.954 |
19 | 59.137 | 62.792 | 77.485 | 54.605 | 79.313 | 73.307 | 72.659 | 87.899 | 67.241 | 87.061 |
20 | 67.083 | 63.403 | 75.903 | 55.764 | 73.958 | 76.674 | 72.049 | 87.108 | 66.723 | 86.653 |
Avg. | 66.489 | 65.497 | 79.693 | 61.024 | 82.437 | 69.117 | 68.460 | 84.672 | 63.743 | 86.777 |
k | Accuracy (%) | Normalized Mutual Information (%) | ||||||||
K-Means | NMF | GNMF | EMD-NMF | GSNMF-EMD | K-Means | NMF | GNMF | EMD-NMF | GSNMF-EMD | |
2 | 20.082 | 20.902 | 19.945 | 19.809 | 20.219 | 10.099 | 10.051 | 14.094 | 10.878 | 14.992 |
3 | 30.601 | 24.772 | 27.140 | 25.319 | 30.328 | 25.187 | 13.428 | 20.438 | 12.115 | 25.352 |
4 | 39.481 | 27.254 | 41.120 | 24.658 | 41.120 | 35.416 | 19.965 | 42.834 | 17.543 | 39.852 |
5 | 39.071 | 30.710 | 35.191 | 26.721 | 43.770 | 32.256 | 26.791 | 40.075 | 19.289 | 37.957 |
6 | 35.246 | 33.197 | 54.508 | 36.566 | 52.505 | 35.468 | 31.005 | 50.292 | 26.079 | 47.111 |
7 | 44.223 | 41.491 | 48.673 | 44.145 | 59.133 | 41.302 | 38.712 | 53.542 | 33.950 | 57.559 |
8 | 50.615 | 46.619 | 50.854 | 38.251 | 48.770 | 46.927 | 44.749 | 54.334 | 32.038 | 48.106 |
9 | 54.614 | 50.213 | 64.511 | 48.482 | 64.359 | 51.401 | 44.901 | 65.380 | 40.234 | 59.547 |
Avg. | 39.242 | 34.395 | 42.743 | 32.994 | 45.026 | 34.757 | 28.700 | 42.623 | 24.016 | 41.310 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Lu, L.; Liu, Q.; Chen, Z. Graph-Regularized, Sparsity-Constrained Non-Negative Matrix Factorization with Earth Mover’s Distance Metric. Mathematics 2023, 11, 1894. https://doi.org/10.3390/math11081894
Li S, Lu L, Liu Q, Chen Z. Graph-Regularized, Sparsity-Constrained Non-Negative Matrix Factorization with Earth Mover’s Distance Metric. Mathematics. 2023; 11(8):1894. https://doi.org/10.3390/math11081894
Chicago/Turabian StyleLi, Shunli, Linzhang Lu, Qilong Liu, and Zhen Chen. 2023. "Graph-Regularized, Sparsity-Constrained Non-Negative Matrix Factorization with Earth Mover’s Distance Metric" Mathematics 11, no. 8: 1894. https://doi.org/10.3390/math11081894
APA StyleLi, S., Lu, L., Liu, Q., & Chen, Z. (2023). Graph-Regularized, Sparsity-Constrained Non-Negative Matrix Factorization with Earth Mover’s Distance Metric. Mathematics, 11(8), 1894. https://doi.org/10.3390/math11081894