On the Extended Version of Krasnoselśkiĭ’s Theorem for Kannan-Type Equicontractive Mappings
Abstract
:1. Introduction
2. Preliminaries
- (a)
- is totally bounded;
- (b)
- implies ;
- (c)
- ;
- (d)
- ;
- (e)
- ;
- (f)
- .
3. Main Results
- (a)
- The mapping satisfying is continuous and 1-st invariant;
- (b)
- The family, say , is equicontinuous uniformly,
4. Applications
4.1. Application I
- (i)
- , where
- (ii)
- ;
- (iii)
- .
4.2. Application II
- (i)
- , where
- (ii)
- ;
- (iii)
- .
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burton, T.A. Integral equations, implicit functions, and fixed points. Proc. Am. Math. Soc. 1996, 124, 2383–2390. [Google Scholar] [CrossRef] [Green Version]
- Burton, T.A.; Kirk, C. A fixed point theorem of Krasnoselskii-Schaefer type. Math. Nachr. 1998, 189, 21–23. [Google Scholar] [CrossRef]
- Schaefer, H. Uber die Methode der a priori-Schranken (German). Math. Ann. 1955, 129, 415–416. [Google Scholar] [CrossRef]
- Karakostas, G.L. An extension of Krasnoselśkiĭ’s fixed point theorem for contractions and compact Mappings. Topol. Methods Nonlinear Anal. 2003, 22, 181–191. [Google Scholar] [CrossRef] [Green Version]
- Wardowski, D. Family of mappings with an equicontractive-type condition. J. Fixed Point Theory Appl. 2020, 22, 55. [Google Scholar] [CrossRef]
- Wardowski, D. A local fixed point theorem and its application to linear operators. J. Nonlinear Convex Anal. 2019, 20, 2217–2223. [Google Scholar]
- Wardowski, D. Solving existence problems via F-contractions. Proc. Am. Math. Soc. 2018, 146, 1585–1598. [Google Scholar] [CrossRef]
- Păcurar, M. Approximating common fixed points of Presić-Kannan type operators by a multi-step iterative method. An. Şt. Univ. Ovidius Constanţa. 2009, 17, 153–168. [Google Scholar]
- Presić, S.B. Sur une classe d’inéquations aux différences finite et sur la convergence de certaines suites. Publ. Inst. Math. 1965, 5, 75–78. [Google Scholar]
- Garai, H.; Dey, L.K.; Senapati, T. On Kannan type contractive mappings. Numer. Funct. Anal. Optim. 2018, 39, 1466–1476. [Google Scholar] [CrossRef]
- Zhao, K. Stability of a Nonlinear Fractional Langevin System with Nonsingular Exponential Kernel and Delay Control. Discret. Dyn. Nat. Soc. 2022, 2022, 16. [Google Scholar] [CrossRef]
- Fu, X.; Liu, X. Existence Results for Fractional Differential Equations with Separated Boundary Conditions and Fractional Impulsive Conditions. Abstr. Appl. Anal. 2013, 2013, 785078. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, R.; Gao, S. The Existence Theorems of Fractional Differential Equation and Fractional Differential Inclusion with Affine Periodic Boundary Value Conditions. Symmetry 2023, 15, 526. [Google Scholar] [CrossRef]
- Guran, L.; Mitrović, Z.D.; Reddy, G.S.M.; Belhenniche, A.; Radenović, S. Applications of a Fixed Point Result for Solving Nonlinear Fractional and Integral Differential Equations. Fractal Fract. 2021, 5, 211. [Google Scholar] [CrossRef]
- Krasnoselśkiĭ, M.A. Some problems of nonlinear analysis. Am. Math. Soc. Transl. Ser. 1958, 2, 345–409. [Google Scholar]
- Przeradzki, B. A generalization of Krasnoselśkii’s fixed point theorem for sums of compact and contractible maps with application. Cent. Eur. J. Math. 2012, 10, 2012–2018. [Google Scholar]
- Vetro, C.; Wardowski, D. Krasnosel’skiĭ-Schaefer type method in the existence problems. Topol. Methods Nonlinear Anal. 2019, 54, 131–139. [Google Scholar] [CrossRef]
- Banaś, J.; Jleli, M.; Mursaleen, M.; Samet, B.; Vetro, C. Advances in Nonlinear Analysis via the Concept of Measure of Noncompactness; Springer Nature: Singapore, 2017. [Google Scholar]
- Akhmerov, R.R.; Kamenskii, M.I.; Potapov, A.S.; Rodkina, A.E.; Sadovskii, B.N. Measures of noncompactness and condensing operators. In Operator Theory: Advances and Applications; Birkhäuser: Basel, Switzerland, 1992; Volume 55. [Google Scholar]
- Banaś, J.; Goebel, K. Measures of noncompactness in Banach spaces. In Lecture Notes in Pure and Applied Mathematics; Marcel Dekker: New York, NY, USA, 1980. [Google Scholar]
- Karmakar, S.; Garai, H.; Dey L., K.; Chanda, A. Existence of solutions to non-linear quadratic integral equations via measure of non-compactness. Filomat 2022, 36, 73–87. [Google Scholar] [CrossRef]
- Darbo, G. Punti uniti in trasformazioni a codominio non compatto. Rend. Semin. Mat. Univ. Padova 1955, 24, 84–92. [Google Scholar]
- Sadovskiĭ, B.N. On a fixed point principle. Funkc. Anal. Prilozh. 1967, 1, 74–76. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, H.; Pal, S.; Bera, A.; Dey, L.K. On the Extended Version of Krasnoselśkiĭ’s Theorem for Kannan-Type Equicontractive Mappings. Mathematics 2023, 11, 1852. https://doi.org/10.3390/math11081852
Huang H, Pal S, Bera A, Dey LK. On the Extended Version of Krasnoselśkiĭ’s Theorem for Kannan-Type Equicontractive Mappings. Mathematics. 2023; 11(8):1852. https://doi.org/10.3390/math11081852
Chicago/Turabian StyleHuang, Huaping, Subhadip Pal, Ashis Bera, and Lakshmi Kanta Dey. 2023. "On the Extended Version of Krasnoselśkiĭ’s Theorem for Kannan-Type Equicontractive Mappings" Mathematics 11, no. 8: 1852. https://doi.org/10.3390/math11081852
APA StyleHuang, H., Pal, S., Bera, A., & Dey, L. K. (2023). On the Extended Version of Krasnoselśkiĭ’s Theorem for Kannan-Type Equicontractive Mappings. Mathematics, 11(8), 1852. https://doi.org/10.3390/math11081852