Nonlinear Volterra Integrodifferential Equations from above on Unbounded Time Scales
Abstract
1. Introduction
2. Notations and Preliminaries
3. Existence and Uniqueness
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hilger, S. Analysis on measure chains. A unified approach to continuous and discrete calculus. Results Math. 1990, 18, 18–56. [Google Scholar] [CrossRef]
- Bohner, M.; Peterson, A. Dynamic Equations on Time Scales. An Introduction with Applications; Birkhäuser: Boston, MA, USA; Basel, Switzerland; Berlin, Germany, 2001. [Google Scholar]
- Bohner, M.; Peterson, A. Advances in Dynamic Equations on Time Scales; Birkhäuser: Boston, MA, USA; Basel, Switzerland; Berlin, Germany, 2003. [Google Scholar]
- Georgiev, S. Integral Equation on Time Scales; Atlamtis Press: Paris, France, 2016. [Google Scholar]
- Adivar, M.; Raffoul, Y.N. Stability, Periodicity and Boundedness in Functional Dynamical Systems on Time Scales; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Karpuz, B. Volterra theory on time scales. Results Math. 2014, 65, 263–292. [Google Scholar] [CrossRef]
- Atici, F.M.; Biles, D.C.; Lebedinsky, A. An application of time scales to economics. Math. Comput. Model. 2006, 43, 718–726. [Google Scholar] [CrossRef]
- Ferguson, B.S.; Lim, G.C. Dynamic Economic Models in Discrete Time. Theory and Empirical Applications; Routledge: London, UK, 2003. [Google Scholar]
- Tisdell, C.C.; Zaidi, A. Basic qualitative and quantitative results for solutions to nonlinear dynamic equations on time scales with an application to economic modeling. Nonlinear Anal. 2008, 68, 3504–3524. [Google Scholar] [CrossRef]
- Messina, E.; Pezzalla, M.; Vecchio, A. A non-standard numerical scheme for age-of-infection epidemic model. J. Comput. Dyn. 2022, 9, 239–252. [Google Scholar] [CrossRef]
- Sikorska-Nowak, A. Integrodifferential equation on time scales with Henstock-Kurzweil delta integrals. Discuss. Math. Differ. Incl. Control Opt. 2011, 31, 71–90. [Google Scholar] [CrossRef]
- Georgiev, S. Volterra integrodifferential equation on time scales. Int. J. Appl. Math. Comput. Sci. 2017, 3, 1577–1587. [Google Scholar] [CrossRef]
- Kulik, T.; Tisdell, C.C. Volterra integral equations on time scales. Basic qualitative and quantitative results with applications to initial value problems on unbounded domains. Int. J. Differ. Equ. 2008, 3, 103–133. [Google Scholar]
- Reinfelds, A.; Christian, S. Volterra integral equations on unbounded time scales. Int. J. Differ. Equ. 2019, 14, 169–177. [Google Scholar] [CrossRef]
- Reinfelds, A.; Christian, S. A nonstandard Volterra integral equation on time scales. Demonstr. Math. 2019, 52, 503–510. [Google Scholar] [CrossRef]
- Reinfelds, A.; Christian, S. Hyers-Ulam stability of Volterra type integral equations on time scales. Adv. Dyn. Syst. Appl. 2020, 15, 39–48. [Google Scholar]
- Pachpatte, B.G. On certain Volterra integral and integrodifferential equations. Facta Univ. Ser. Math. Inform. 2008, 23, 1–12. [Google Scholar]
- Pachpatte, B.G. Implict type Volterra integrodifferential equation. Tamkang J. Math. 2010, 41, 97–107. [Google Scholar] [CrossRef]
- Pachpatte, D.B. Fredholm type integrodifferential equation on time scales. Electron. J. Differ. Equ. 2010, 140, 1–10. [Google Scholar]
- Pachpatte, D.B. Properties of solutions to nonlinear dynamic integral equations on time scales. Electron. J. Differ. Equ. 2008, 136, 1–8. [Google Scholar]
- Pachpatte, D.B. On a nonlinear dynamic integrodifferential equation on time scales. J. Appl. Anal. 2010, 16, 279–294. [Google Scholar] [CrossRef]
- Christian, S. Volterra Integral Equation on Time Scales. Ph.D. Thesis, University of Latvia, Riga, Latvia, 27 November 2020. [Google Scholar]
- Bohner, M. Some oscillation criteria for first order delay dynamic equations. Far East J. Appl. Math. 2005, 18, 289–304. [Google Scholar]
- Corduneanu, C. Integral Equations and Applications; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reinfelds, A.; Christian, S. Nonlinear Volterra Integrodifferential Equations from above on Unbounded Time Scales. Mathematics 2023, 11, 1760. https://doi.org/10.3390/math11071760
Reinfelds A, Christian S. Nonlinear Volterra Integrodifferential Equations from above on Unbounded Time Scales. Mathematics. 2023; 11(7):1760. https://doi.org/10.3390/math11071760
Chicago/Turabian StyleReinfelds, Andrejs, and Shraddha Christian. 2023. "Nonlinear Volterra Integrodifferential Equations from above on Unbounded Time Scales" Mathematics 11, no. 7: 1760. https://doi.org/10.3390/math11071760
APA StyleReinfelds, A., & Christian, S. (2023). Nonlinear Volterra Integrodifferential Equations from above on Unbounded Time Scales. Mathematics, 11(7), 1760. https://doi.org/10.3390/math11071760