The Askey–Wilson Integral and Extensions
Abstract
:1. Introduction and Motivation
2. Preliminaries about q-Derivative Operators
3. The q-Beta Integral of Askey and Wilson
3.1. q-Beta Integrals from 2 to 3 Free Parameters
3.2. q-Beta Integrals from 3 to 4 Free Parameters
3.3. q-Beta Integrals from 4 to 5 Free Parameters
4. The q-Gauss Summation Theorem
4.1. The First Integral with Parameter λ in Numerator
4.2. The Second Integral with Parameter λ in Numerator
4.3. The Third Integral with Parameter λ in Numerator
5. The q-Beta Integral of Nassrallah and Rahman
5.1. The First Double Sum Expression
5.2. The Second Double Sum Expression
5.3. Reduction of Double Sum to Single One
6. Bailey’s Well-Poised Bilateral -Series
7. The q-Beta Integrals of Karlsson–Minton Type
7.1. Boosting the First Numerator Parameter by
7.2. Boosting Denominator Parameter d by
7.3. Boosting the Second Numerator Parameter by
7.4. Boosting Another Denominator Parameter c by
7.5. Boosting the Third Numerator Parameter by
Concluding Comments
Funding
Data Availability Statement
Conflicts of Interest
References
- Bailey, W.N. Generalized Hypergeometric Series; Cambridge University Press: Cambridge, UK, 1935. [Google Scholar]
- Gasper, G.; Rahman, M. Basic Hypergeometric Series, 2nd ed.; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Askey, R.; Wilson, J.A. Some Basic Hypergeometric Orthogonal Polynomials that Generalize Jacobi Polynomials. Mem. Am. Math. Soc. 1985, 319, 55. [Google Scholar] [CrossRef]
- Andrews, G.E.; Askey, R.; Roy, R. Special Functions. In Encyclopedia of Mathematics and Its Applications 71; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Bowman, D. An easy proof of the Askey–Wilson integral and applications of the method. J. Math. Anal. Appl. 2000, 245, 560–569. [Google Scholar] [CrossRef] [Green Version]
- Chu, W. Bailey’s very well-poised 6ψ6-series identity. J. Combin. Theory Ser. A 2006, 113, 966–979. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.-G. An identity of Andrews and the Askey–Wilson integral. Ramanujan J. 2009, 19, 115–119. [Google Scholar] [CrossRef]
- Rahman, M. A simple evaluation of Askey and Wilson’s q-beta integral. Proc. Am. Math. Soc. 1984, 92, 413–417. [Google Scholar]
- Al-Salam, W.A.; Ismail, M.E.H. q-beta integrals and the q-Hermite polynomials. Pac. J. Math. 1988, 135, 209–221. [Google Scholar] [CrossRef] [Green Version]
- Nassrallah, B.; Rahman, M. Projection formulas, a reproducing kernel and a generating function for q-Wilson polynomials. SIAM J. Math. Anal. 1985, 16, 186–197. [Google Scholar] [CrossRef]
- Rahman, M. q-Wilson functions of the second kind. SIAM J. Math. Anal. 1986, 17, 1280–1286. [Google Scholar] [CrossRef]
- Rahman, M. An integral representation of a 10ϕ9 and continuous bi-orthogonal 10ϕ9 rational functions. Canad. J. Math. 1986, 38, 605–618. [Google Scholar] [CrossRef]
- Rahman, M. Some extensions of Askey-Wilson’s q-beta integral and the corresponding orthogonal systems. Canad. Math. Bull. 1988, 31, 467–476. [Google Scholar] [CrossRef]
- Verma, A.; Jain, V.K. An extension of Askey-Wilson’s q-beta integral and its applications. Rocky Mt. J. Math. 1992, 22, 733–756. [Google Scholar] [CrossRef]
- Ismail, M.E.H.; Stanton, D.; Viennot, G. The combinatorics of q-Hermite polynomials and the Askey-Wilson integral. Eur. J. Combin. 1987, 8, 379–392. [Google Scholar] [CrossRef] [Green Version]
- Chu, W. Partial–fraction expansions and well–poised bilateral series. Acta Sci. Mat. 1998, 64, 495–513. [Google Scholar]
- Carlitz, L. Some q-expansion formulas. Glasnik Mat. 1973, 8, 205–213. [Google Scholar]
- Chu, W. q-Derivative operators and basic hypergeometric series. Results Math. 2006, 49, 25–44. [Google Scholar]
- Liu, Z.-G. An expansion formula for q-series and applications. Ramanujan J. 2002, 6, 429–447. [Google Scholar] [CrossRef]
- Rogers, L.J. On the exapansion of some infinite series. Proc. Lond. Math. Soc. 1893, 24, 337–352. [Google Scholar]
- Chen, W.Y.C.; Liu, Z.-G. Parameter augmentation for basic hypergeometric series I. In Mathematical Essays in Honor of Gian-Carlo Rota; Sagan, B.E., Stanley, R.P., Eds.; Birkhäuser: Basel, Switzerland, 1998; pp. 111–129. [Google Scholar]
- Chen, W.Y.C.; Liu, Z.-G. Parameter augmentation for basic hypergeometric series II. J. Combin. Theory Ser. A 1997, 80, 175–195. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.-G. Some operator identities and q-series transformation formulas. Discret. Math. 2003, 265, 119–139. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Wang, J. Two operator identities and their applications to terminating basic hypergeometric series and q-integrals. J. Math. Anal. Appl. 2005, 312, 653–665. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.-G. Two q-difference equations and q-operator identities. J. Differ. Equ. Appl. 2010, 16, 1293–1307. [Google Scholar] [CrossRef]
- Chen, V.Y.B.; Gu, N.S.S. The Cauchy operator for basic hypergeometric series. Adv. Appl. Math. 2008, 41, 177–196. [Google Scholar] [CrossRef] [Green Version]
- Fang, J.P. q-differential operator identities and applications. J. Math. Anal. Appl. 2007, 332, 1393–1407. [Google Scholar] [CrossRef] [Green Version]
- Jia, Z. Two new q-exponential operator identities and their applications. J. Math. Anal. Appl. 2014, 419, 329–338. [Google Scholar] [CrossRef]
- Li, N.N.; Tan, W. Two generalized q-exponential operators and their applications. Adv. Differ. Equ. 2016, 2016, 53. [Google Scholar] [CrossRef] [Green Version]
- Cao, J.; Niu, D.W. q-difference equations for Askey–Wilson type integrals via q-polynomials. J. Math. Anal. Appl. 2017, 452, 830–845. [Google Scholar] [CrossRef]
- Chu, W. Abel’s lemma on summation by parts and Ramanujan’s 1ψ1-series identity. Aequationes Math. 2006, 72, 172–176. [Google Scholar] [CrossRef]
- Ito, M.; Witte, N.S. On a family of integrals that extend the Askey–Wilson integral. J. Math. Anal. Appl. 2015, 421, 1101–1130. [Google Scholar] [CrossRef]
- Liu, Z.-G. On a reduction formula for a kind of double q-integrals. Symmetry 2016, 8, 44. [Google Scholar] [CrossRef] [Green Version]
- Szablowski, P.J. Askey-Wilson integral and its generalizations. Adv. Differ. Equ. 2014, 2014, 316. [Google Scholar] [CrossRef] [Green Version]
- Chu, W.; Zhang, W. Well–poised reduction formulae for q-Kampé de Fériet function. Ukr. Math. J. 2011, 62, 1783–1802. [Google Scholar] [CrossRef]
- Bailey, W.N. Series of hypergeometric type which are infinite in both directions. Q. J. Math. 1936, 7, 105–115. [Google Scholar] [CrossRef]
- Rahman, M. An integral representation of the very-well-poised 8ψ8 series in “Symmetries and Integrability of Difference Equations” (Estérel, PQ, 1994). In CRM Proceedings Lecture Notes; American Mathematical Society: Providence, RI, USA, 1996; Volume 9, pp. 281–287. [Google Scholar]
- Chu, W.; Wang, X. Basic bilateral very well–poised series and Shulkla’s 8ψ8-summation formula. J. Math. Anal. Appl. 2007, 328, 535–549. [Google Scholar] [CrossRef] [Green Version]
- Chu, W.; Ma, X.R. Bailey’s well–poised 6ψ6-series implies Askey–Wilson integral. J. Combin. Theory Ser. A 2011, 118, 240–247. [Google Scholar] [CrossRef] [Green Version]
- Wei, C.; Wang, X.; Yan, Q. Generalizations of Ramanujan’s reciprocity formula and the Askey–Wilson integral. Ramanujan J. 2015, 37, 203–217. [Google Scholar] [CrossRef] [Green Version]
- Rudin, W. Principles of Mathematical Analysis, 3rd ed.; McGraw-Hill, Inc.: New York, NY, USA, 1976. [Google Scholar]
- Zhang, Z. A note on an identity of Andrews. Electron. J. Combin. 2005, 12, N3. [Google Scholar] [CrossRef]
- Andrews, G.E. Ramanujan’s “lost” notebook. I. Partial θ-functions. Adv. Math. 1981, 41, 137–172. [Google Scholar] [CrossRef]
- Chu, W.; Zhang, W. Bilateral q-series identities and reciprocal formulae. Funct. Approx. Comment. Math. 2010, 42, 153–162. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chu, W. The Askey–Wilson Integral and Extensions. Mathematics 2023, 11, 1759. https://doi.org/10.3390/math11071759
Chu W. The Askey–Wilson Integral and Extensions. Mathematics. 2023; 11(7):1759. https://doi.org/10.3390/math11071759
Chicago/Turabian StyleChu, Wenchang. 2023. "The Askey–Wilson Integral and Extensions" Mathematics 11, no. 7: 1759. https://doi.org/10.3390/math11071759