Fast Frequency Domain Screen-Shooting Watermarking Algorithm Based on ORB Feature Points
Abstract
:1. Introduction
- We apply the fast ORB feature point algorithm to find out the anti-screenshot feature points for embedding the watermark information. Then, in the watermarking extraction process, the ORB feature values of the three RGB color channels are calculated simultaneously.
- A DWT-SVD based dual frequency domain watermarking algorithm is adopted to embed watermark information in the frequency domain. This makes a notable improvement in the robustness of the proposed algorithm.
- The marker for embedding the watermark is designed by calculating the ORB feature point descriptors and the layout of the Aesthetic Quick Response (AQR) code to ensure that the watermark information can be extracted with low bit error rates.
- We conduct some extensive experiments under different screen-shooting attacks, such as different distances and capturing angles of the screenshots, which indicate that the proposed algorithm outperforms the existing algorithms in terms of robustness, capacity, and time complexity.
2. Related Works
2.1. ORB Feature Points-Based Algorithms
2.2. Screen-Shooting Watermarking-Based Algorithms
3. Proposed Algorithm
3.1. Watermark Embedding
3.1.1. Generating Watermark Information
3.1.2. ORB Feature Point Detection
- oFAST feature points detector
- rBrief descriptor
3.1.3. Selection of Watermark Embedding Area
3.1.4. Watermark Template Embedding
3.2. Watermark Extraction
3.2.1. Pre-Processing of Captured Watermarked Image
3.2.2. Multi-Channel Feature Point Positioning
- (a)
- The intensity of the feature points: In this case, the response values of the feature points will be changed, which affects their arrangement order. Thus, the number of feature points to be extracted is increased. For -ORB feature points used for watermark embedding, feature points are extracted during the watermark extraction. Furthermore, the size of the Hamming window is changed from 74 × 74 to 40 × 40 to prevent the feature points in the embedded watermark from being ignored due to the changes in response values.
- (b)
- The position of the feature points: In this case, the position of each feature point will be slightly offset. Considering the uncertainty of the offset direction, the feature point may move to the surrounding 8 pixels. So, the watermark information must be extracted for the 3 × 3 pixels centered on the feature point. Then, 9 watermark sequences are extracted for each feature point, and the total number of watermark sequences is . Consequently, a total of watermark sequences are extracted from the entire image.
3.2.3. Extracting Watermark Information
4. Experimental Results and Analysis
4.1. Implementation Details
4.2. k-Feature Points Embedding Regions
4.3. Watermark Pair Matching Threshold (th)
4.4. Robustness Comparison
4.4.1. Robustness against Different Distances of Screenshots
4.4.2. Robustness against Different Horizontal Angles of Screenshots
4.4.3. Robustness against Different Vertical Angles of Screenshots
4.5. Watermark Extraction Time
5. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Z.; Li, L.; Peng, H.; Liu, Y.; Yang, Y. A novel digital watermarking based on general non-negative matrix factorization. IEEE Trans. Multimed. 2018, 20, 1973–1986. [Google Scholar] [CrossRef]
- Hua, G.; Zhao, L.; Zhang, H.; Bi, G.; Xiang, Y. Random matching pursuit for image watermarking. IEEE Trans. Circuits Syst. Video Technol. 2018, 29, 625–639. [Google Scholar] [CrossRef]
- Liu, X.L.; Lin, C.C.; Yuan, S.M. Blind dual watermarking for color images’ authentication and copyright protection. IEEE Trans. Circuits Syst. Video Technol. 2016, 28, 1047–1055. [Google Scholar] [CrossRef]
- Zong, T.; Xiang, Y.; Natgunanathan, I.; Guo, S.; Zhou, W.; Beliakov, G. Robust histogram shape-based method for image watermarking. IEEE Trans. Circuits Syst. Video Technol. 2014, 25, 717–729. [Google Scholar] [CrossRef]
- Asikuzzaman, M.; Pickering, M.R. An overview of digital video watermarking. IEEE Trans. Circuits Syst. Video Technol. 2017, 28, 2131–2153. [Google Scholar] [CrossRef]
- Kang, X.; Yang, R.; Huang, J. Geometric invariant audio watermarking based on an lcm feature. IEEE Trans. Multimed. 2011, 13, 181–190. [Google Scholar] [CrossRef]
- Huang, Y.; Niu, B.; Guan, H.; Zhang, S. Enhancing image watermarking with adaptive embedding parameter and psnr guarantee. IEEE Trans. Multimed. 2019, 21, 2447–2460. [Google Scholar] [CrossRef]
- Zhong, X.; Huang, P.; Mastorakis, S.; Shih, F.Y. An automated and robust image watermarking scheme based on deep neural networks. IEEE Trans. Multimed. 2020, 23, 1951–1961. [Google Scholar] [CrossRef]
- Schaber, P.; Kopf, S.; Wetzel, S.; Ballast, T.; Wesch, C.; Effelsberg, W. CamMark: Analyzing, modeling, and simulating artifacts in camcorder copies. ACM Trans. Multimed. Comput. Commun. Appl. 2015, 11, 1–23. [Google Scholar] [CrossRef]
- Fang, H.; Zhang, W.M.; Zhou, H.; Cui, H.; Yu, N.H. Screen-shooting resilient watermarking. IEEE Trans. Inf. Secur. 2019, 14, 1403–1418. [Google Scholar] [CrossRef]
- Li, L.; Bai, R.; Zhang, S.; Chang, C.C.; Shi, M. Screen-Shooting Resilient Watermarking Scheme via Learned Invariant Keypoints and QT. Sensors 2021, 21, 6554. [Google Scholar] [CrossRef]
- Mallat, S.G. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 1989, 11, 674–693. [Google Scholar] [CrossRef] [Green Version]
- Guariglia, E.; Silvestrov, S. Fractional-Wavelet Analysis of Positive definite Distributions and Wavelets on D′(C). In Engineering Mathematics II. Springer Proceedings in Mathematics & Statistics; Silvestrov, S., Rančić, M., Eds.; Springer: Cham, Switzerland, 2016; Volume 179, pp. 337–353. [Google Scholar] [CrossRef]
- Yang, L.; Su, H.; Zhong, C.; Meng, Z.; Luo, H.; Li, X.; Tang, Y.Y.; Lu, Y. Hyperspectral image classification using wavelet transform-based smooth ordering. Int. J. Wavelets Multiresolut. Inf. Process. 2019, 17, 1950050. [Google Scholar] [CrossRef]
- Guariglia, E. Harmonic Sierpinski Gasket and Applications. Entropy 2018, 20, 714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, X.; Tang, Y.Y.; Zhou, J. A Framework of Adaptive Multiscale Wavelet Decomposition for Signals on Undirected Graphs. IEEE Trans. Signal Process. 2019, 67, 1696–1711. [Google Scholar] [CrossRef]
- Guariglia, E. Primality, Fractality, and Image Analysis. Entropy 2019, 21, 304. [Google Scholar] [CrossRef] [Green Version]
- Berry, M.V.; Lewis, Z.V. On the Weierstrass-Mandelbrot fractal function. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1980, 370, 459–484. [Google Scholar]
- Fang, H.; Chen, D.D.; Wang, F.; Ma, Z.H.; Liu, H.G.; Zhou, W.B.; Zhang, W.M.; Yu, N.H. TERA: Screen-to-Camera image code with transparency, efficiency, robustness and adaptability. IEEE Trans. Multimed. 2021, 24, 955–967. [Google Scholar] [CrossRef]
- Zhu, Q.; Wang, Z.; Hu, H.; Xie, L.F.; Ge, X.M.; Zhang, Y.T. Leveraging photogrammetric mesh models for aerial-ground feature point matching toward integrated 3D reconstruction. ISPRS J. Photogramm. Remote Sens. 2020, 166, 26–40. [Google Scholar] [CrossRef]
- Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Ethan, R.; Vincent, R.; Kurt, K.; Gary, B. ORB: An efficient alternative to SIFT or SURF. In Proceedings of the 2011 IEEE International Conference on Computer Vision (ICCV), Barcelona, Spain, 6–13 November 2011; pp. 2564–2571. [Google Scholar]
- Ma, C.Q.; Hu, X.G.; Li, F.; Zhang, G.F. An improved ORB algorithm based on multi-Feature fusion. In Proceedings of the 2018 IEEE 27th International Symposium on Industrial Electronics (ISIE), Cairns, Australia, 13–15 June 2018; pp. 729–734. [Google Scholar]
- Wang, R.; Zhang, W.G.; Shi, Y.J.; Wang, X.Y.; Cao, W.M. GA-ORB: A new efficient feature extraction algorithm for multispectral images based on geometric algebra. IEEE Access 2019, 7, 71235–71244. [Google Scholar] [CrossRef]
- Qin, Y.Y.; Xu, H.K.; Chen, H.R. Image feature points matching via improved ORB. In Proceedings of the 2014 IEEE International Conference on Progress in Informatics and Computing (ICPIC), Shanghai, China, 16–18 May 2014; pp. 204–208. [Google Scholar]
- Weberruss, J.; Xu, L.; Boland, D.; Drummond, T. FPGA acceleration of multilevel ORB feature extraction for computer vision. In Proceedings of the 2017 27th International Conference on Field Programmable Logic and Applications (FPL), Ghent, Belgium, 4–8 September 2017; pp. 2564–2571. [Google Scholar]
- Mur-Artal, R.; Montiel, J.M.M.; Tardos, J.D. ORB-SLAM: A versatile and accurate monocular SLAM system. IEEE Trans. Robot. 2015, 31, 1147–1163. [Google Scholar] [CrossRef] [Green Version]
- Mur-Artal, R.; Tardos, J.D. ORB-SLAM2: An open-source SLAM system for monocular, stereo, and RGB-D cameras. IEEE Trans. Robot. 2017, 33, 1255–1262. [Google Scholar] [CrossRef] [Green Version]
- Campos, C.; Elvira, R.; Rodriguez, J.J.G.; Montiel, J.M.M.; Tardos, J.D. ORB-SLAM3: An accurate open-source library for visual, visual-inertial and multi-map SLAM. IEEE Trans. Robot. 2021, 37, 1874–1890. [Google Scholar] [CrossRef]
- Yamni, M.; Daoui, A.; Elogri, O.; Karmouni, H.; Sayyouri, M.; Qjidaa, H.; Flusser, J. Fractional Charlier moments for image reconstruction and image watermarking. IEEE Signal Process. 2020, 171, 1–15. [Google Scholar] [CrossRef]
- Andalibi, M.; Chandler, D.M. Digital image watermarking via adaptive logo texturization. IEEE Trans. Image Process 2015, 24, 5060–5073. [Google Scholar] [CrossRef]
- Li, D.M.; Deng, L.B.; Gupta, B.B.; Wang, H.X.; Choi, C. A novel CNN based security guaranteed image watermarking generation scenario for smart city applications. Inf. Sci. 2019, 479, 432–447. [Google Scholar] [CrossRef]
- Fridrich, J. Digital image forensics. IEEE Signal Process. 2009, 26, 26–37. [Google Scholar] [CrossRef]
- Pramila, A.; Keskinarkaus, A.; Seppänen, T. Toward an interactive poster using digital watermarking and a mobile phone camera. Signal Image Video Process. 2012, 6, 211–222. [Google Scholar] [CrossRef]
- Fang, H.; Zhang, W.M.; Ma, Z.H.; Zhou, H.; Sun, S.; Cui, H.; Yu, N.H. A camera shooting resilient watermarking scheme for underpainting documents. IEEE Trans. Multimed. 2020, 30, 4075–4089. [Google Scholar] [CrossRef]
- Fang, H.; Chen, D.D.; Huang, Q.D.; Zhang, J.; Ma, Z.H.; Zhang, W.M.; Yu, N.H. Deep Template-based Watermarking. IEEE Trans. Multimed. 2021, 31, 1436–1451. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net:Convolutional networks for biomedical image segmentation. In International Conference on Medical Image Computing and Computer-Assisted Intervention; Springer: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Chen, W.T.; Ren, N.; Zhu, C.Q.; Zhou, Q.F.; Seppänen, T.; Keskinarkaus, A. Screen-Cam robust image watermarking with Feature-Based synchronization. Appl. Sci. 2020, 10, 7494. [Google Scholar] [CrossRef]
- Chen, W.T.; Zhu, C.Q.; Ren, N.; Seppänen, T.; Keskinarkaus, A. Screen-Cam robust and blind watermarking for tile satellite images. Appl. Sci. 2020, 8, 125274–125294. [Google Scholar] [CrossRef]
- Chen, W.T.; Ren, N.; Zhu, C.Q.; Keskinarkaus, A.; Seppänen, T.; Zhou, Q.F. Joint image encryption and Screen-Cam robust two watermarking scheme. Sensors 2021, 21, 701. [Google Scholar] [CrossRef]
- Gugelmann, D.; Sommer, D.; Lenders, V.; Happe, M.; Vanbever, L. Screen watermarking for data theft investigation and attribution. In Proceedings of the 2018 10th International Conference on Cyber Conflict (CyCon), Tallinn, Estonia, 30 May–1 June 2018; pp. 391–408. [Google Scholar]
- Zhu, J.; Kaplan, R.; Johnson, J.; Li, F.-F. Hidden: Hiding data with deep networks. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 657–672. [Google Scholar]
- Pramila, A.; Keskinarkaus, A.; Takala, V.; Seppänen, T. Extracting watermarks from printouts captured with wide angles using computational photography. Multimed. Tools Appl. 2017, 76, 16063–16084. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Xie, Y.X.; Yuan, J.H. A Deep Learning Assisted Node-Classified Redundant Decoding Algorithm for BCH Codes. IEEE Trans. Commun. 2020, 68, 5338–5349. [Google Scholar] [CrossRef]
- Ma, C.Q.; Hu, X.G.; Xiao, J.; Du, H.C.; Zhang, G.F. Improved ORB Algorithm Using Three-Patch Method and Local Gray Difference. Sensors 2020, 20, 975. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Zhou, L.; Li, S. A new method to construct strictly optimal frequency hopping sequences with new parameters. IEEE Trans. Inf. Theory 2019, 65, 1828–1844. [Google Scholar] [CrossRef]
- Anand, A.; Singh, A.K. An improved DWT-SVD domain watermarking for medical information security. Comput. Commun. 2020, 152, 72–80. [Google Scholar] [CrossRef]
- Zhang, L.N.; Wei, D.Y. Dual DCT-DWT-SVD digital watermarking algorithm based on particle swarm optimization. Multimed. Tools Appl. 2019, 78, 28003–28023. [Google Scholar] [CrossRef]
- Thakur, S.; Singh, A.K.; Kumar, B.; Ghrera, S.P. Improved DWT-SVD-Based Medical Image Watermarking through Hamming Code and Chaotic Encryption. In Advances in VLSI, Communication, and Signal Processing; Lecture Notes in Electrical Engineering; Dutta, D., Kar, H., Kumar, C., Bhadauria, V., Eds.; Springer: Singapore, 2020; Volume 587, pp. 897–905. [Google Scholar] [CrossRef]
- Chang, C.C.; Tsai, P.; Lin, C.C. SVD-based digital image watermarking scheme. Pattern Recognit. Lett. 2005, 26, 1577–1586. [Google Scholar] [CrossRef]
- Yagan, A.C.; Ozgen, M.T. Spectral graph based vertex-frequency wiener filtering for image and graph signal denoising. IEEE Trans. Signal Inf. Process. Over Netw. 2020, 6, 226–240. [Google Scholar] [CrossRef]
- Li, L.; Bai, R.; Lu, J.F.; Zhang, S.Q.; Chang, C.C. A watermarking scheme for color image using quaternion discrete fourier transform and tensor decomposition. Appl. Sci. 2021, 11, 5006. [Google Scholar] [CrossRef]
- University of Southern California. The USC-SIPI Image Database, Signal and Image Processing Institute. Available online: http://sipi.usc.edu/database (accessed on 15 October 2022).
- Bas, P.; Filler, T.; Pevný, T. Break our steganographic system: The ins and outs of organizing BOSS. In Information Hiding; Springer: Berlin/Heidelberg, Germany, 2011; pp. 59–70. [Google Scholar]
- Sahu, A.K.; Sahu, M.; Patro, P.; Sahu, G.; Nayak, S.R. Dual image-based reversible fragile watermarking scheme for tamper detection and localization. Pattern Anal. Appl. 2022, 1–20. [Google Scholar] [CrossRef]
ORB Feature Point Number | Response Values of ORB Feature Point for Y Channel | Maximum Value | Select? | ||
---|---|---|---|---|---|
1 | 0 | YES | |||
2 | 1 | NO | |||
3 | 0 | YES |
Distance | 45 cm | 55 cm | 65 cm | 75 cm | 85 cm | 95 cm | 105 cm |
---|---|---|---|---|---|---|---|
Threshold (th) | 5.02 | 5.10 | 5.42 | 5.37 | 5.65 | 5.59 | 5.76 |
Method | Pramila et al. [43] | Fang et al. [10] | Chen et al. [39] | Sahu et al. [55] | Proposed |
---|---|---|---|---|---|
Watermarked Image | |||||
PSNR | 42.3029 | 42.4681 | 42.3715 | 42.3467 | 42.5644 |
Distance | 45 cm | 55 cm | 75 cm | 95 cm | 105 cm |
---|---|---|---|---|---|
Captured Images | |||||
Corrected Images |
Distance (cm) | Pramila et al. [43] | Fang et al. [10] | Chen et al. [39] | Sahu et al. [55] | Proposed | |
---|---|---|---|---|---|---|
BER | BER | BER | BER | BER | Recovered? | |
45 | 105 | 26 | 19 | 16 | 11 | Yes |
55 | 94 | 23 | 23 | 13 | 13 | Yes |
65 | 99 | 27 | 20 | 15 | 14 | Yes |
75 | 107 | 21 | 18 | 19 | 10 | Yes |
85 | 105 | 23 | 22 | 18 | 12 | Yes |
95 | 108 | 21 | 18 | 16 | 12 | Yes |
105 | 102 | 22 | 21 | 23 | 11 | Yes |
Angle | Left 65° | Left 30° | 0° | Right 30° | Right 65° |
---|---|---|---|---|---|
Captured Images | |||||
Corrected Images |
Horizontal Angle (°) | Pramila et al. [43] | Fang et al. [10] | Chen et al. [39] | Sahu et al. [55] | Proposed | |
---|---|---|---|---|---|---|
BER | BER | BER | BER | BER | Recovered? | |
Left 65 | 116 | 53 | 74 | 47 | 47 | No |
Left 60 | 109 | 29 | 36 | 32 | 23 | No |
Left 45 | 107 | 24 | 28 | 25 | 16 | Yes |
Left 30 | 100 | 25 | 23 | 20 | 14 | Yes |
Left 15 | 102 | 23 | 20 | 21 | 12 | Yes |
0 | 99 | 24 | 18 | 16 | 12 | Yes |
Right 15 | 105 | 24 | 19 | 18 | 12 | Yes |
Right 30 | 105 | 23 | 23 | 22 | 16 | Yes |
Right 45 | 103 | 24 | 29 | 25 | 15 | Yes |
Right 60 | 108 | 27 | 39 | 34 | 22 | No |
Right 65 | 114 | 55 | 71 | 49 | 44 | No |
Angle | Down 65° | Down 30° | 0° | Up 30° | Up 65° |
---|---|---|---|---|---|
Captured Images | |||||
Corrected Images |
Vertical Angle (°) | Pramila et al. [43] | Fang et al. [10] | Chen et al. [39] | Sahu et al. [55] | Proposed | |
---|---|---|---|---|---|---|
BER | BER | BER | BER | BER | Recovered? | |
Down 65 | 113 | 60 | 71 | 54 | 44 | No |
Down 60 | 110 | 34 | 38 | 30 | 25 | No |
Down 45 | 98 | 27 | 24 | 25 | 18 | No |
Down 30 | 104 | 26 | 25 | 22 | 15 | Yes |
Down 15 | 103 | 23 | 19 | 17 | 12 | Yes |
0 | 99 | 24 | 18 | 16 | 12 | Yes |
Up 15 | 96 | 22 | 21 | 18 | 13 | Yes |
Up 30 | 107 | 24 | 22 | 20 | 14 | Yes |
Up 45 | 101 | 24 | 26 | 23 | 16 | Yes |
Up 60 | 111 | 29 | 41 | 26 | 21 | No |
Up 65 | 112 | 58 | 75 | 49 | 49 | No |
Distance (cm) | Extraction Time (S) | |||||||
---|---|---|---|---|---|---|---|---|
Lena | Mandril | Boats | Peppers | |||||
Fang et al. [10] | Proposed | Fang et al. [10] | Proposed | Fang et al. [10] | Proposed | Fang et al. [10] | Proposed | |
45 | 15.1710 | 10.0721 | 14.7094 | 9.9234 | 15.1966 | 9.9848 | 15.1067 | 9.9224 |
55 | 15.0946 | 9.9832 | 14.5898 | 9.8578 | 15.0838 | 9.9013 | 15.0046 | 9.8620 |
65 | 15.0218 | 9.9047 | 14.5156 | 9.7282 | 14.9737 | 9.8551 | 14.9619 | 9.7541 |
75 | 14.9571 | 9.7858 | 14.4304 | 9.6705 | 14.9172 | 9.7593 | 14.8987 | 9.6892 |
85 | 14.8691 | 9.7271 | 14.3697 | 9.6157 | 14.8702 | 9.6872 | 14.8149 | 9.5905 |
95 | 14.8202 | 9.6134 | 14.2616 | 9.5690 | 14.8651 | 9.5913 | 14.6959 | 9.5338 |
105 | 14.7439 | 9.5469 | 14.1957 | 9.4849 | 14.8094 | 9.5043 | 14.6355 | 9.4927 |
Horizontal Angle (°) | Extraction Time (S) | |||||||
---|---|---|---|---|---|---|---|---|
Lena | Mandril | Boats | Peppers | |||||
Fang et al. [10] | Proposed | Fang et al. [10] | Proposed | Fang et al. [10] | Proposed | Fang et al. [10] | Proposed | |
Left 65 | 14.8324 | 9.8401 | 14.4240 | 9.7294 | 14.8591 | 9.8130 | 14.8487 | 9.6971 |
Left 60 | 14.8969 | 9.8512 | 14.4602 | 9.7650 | 14.8942 | 9.8467 | 14.8579 | 9.7087 |
Left 45 | 14.9553 | 9.8745 | 14.4907 | 9.7528 | 14.9681 | 9.8415 | 14.9289 | 9.7542 |
Left 30 | 14.9372 | 9.9896 | 14.5028 | 9.7811 | 14.9358 | 9.8524 | 14.9487 | 9.7490 |
Left 15 | 15.0023 | 9.9163 | 14.5384 | 9.7906 | 15.0386 | 9.8679 | 14.9765 | 9.7903 |
0 | 15.0775 | 9.9518 | 14.5579 | 9.8124 | 15.0293 | 9.8826 | 14.9717 | 9.8105 |
Right 15 | 14.9821 | 9.9239 | 14.5250 | 9.7658 | 14.9962 | 9.8901 | 14.9859 | 9.8175 |
Right 30 | 14.9470 | 9.8637 | 14.4973 | 9.7932 | 14.9407 | 9.8578 | 14.9205 | 9.7541 |
Right 45 | 14.9456 | 9.8948 | 14.5136 | 9.7801 | 14.9621 | 9.8603 | 14.8976 | 9.7579 |
Right 60 | 14.9092 | 9.8489 | 14.4578 | 9.7430 | 14.8654 | 9.8221 | 14.8291 | 9.7240 |
Right 65 | 14.8586 | 9.8425 | 14.4392 | 9.7307 | 14.8497 | 9.8265 | 14.8123 | 9.7069 |
Vertical Angle (°) | Extraction Time (S) | |||||||
---|---|---|---|---|---|---|---|---|
Lena | Mandril | Boats | Peppers | |||||
Fang et al. [10] | Proposed | Fang et al. [10] | Proposed | Fang et al. [10] | Proposed | Fang et al. [10] | Proposed | |
Down 65 | 14.8841 | 9.8306 | 14.4691 | 9.7368 | 14.8646 | 9.8259 | 14.8136 | 9.6196 |
Down 60 | 14.9058 | 9.8572 | 14.4430 | 9.7417 | 14.8709 | 9.8403 | 14.8193 | 9.6251 |
Down 45 | 14.9527 | 9.8854 | 14.4874 | 9.7802 | 14.9457 | 9.8585 | 14.9493 | 9.6916 |
Down 30 | 14.9413 | 9.8803 | 14.5057 | 9.7734 | 14.9276 | 9.8832 | 14.9257 | 9.7473 |
Down 15 | 14.9962 | 9.9449 | 14.5431 | 9.8387 | 14.9698 | 9.8751 | 14.9840 | 9.7351 |
0 | 15.0795 | 9.9428 | 14.5171 | 9.8136 | 14.9726 | 9.8805 | 14.9524 | 9.7608 |
Up 15 | 15.0278 | 9.9157 | 14.5076 | 9.8165 | 14.9609 | 9.8506 | 14.9407 | 9.7585 |
Up 30 | 14.9546 | 9.8792 | 14.5318 | 9.8229 | 14.9651 | 9.8691 | 14.9418 | 9.7497 |
Up 45 | 14.9475 | 9.8595 | 14.4726 | 9.7869 | 14.9626 | 9.8490 | 14.9195 | 9.7721 |
Up 60 | 14.9149 | 9.8755 | 14.4602 | 9.7498 | 14.8190 | 9.8395 | 14.8362 | 9.6582 |
Up 65 | 14.8675 | 9.8035 | 14.4497 | 9.7046 | 14.8498 | 9.8142 | 14.8035 | 9.6257 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, Y.; Li, L.; Zhang, S.; Lu, J.; Emam, M. Fast Frequency Domain Screen-Shooting Watermarking Algorithm Based on ORB Feature Points. Mathematics 2023, 11, 1730. https://doi.org/10.3390/math11071730
Bai Y, Li L, Zhang S, Lu J, Emam M. Fast Frequency Domain Screen-Shooting Watermarking Algorithm Based on ORB Feature Points. Mathematics. 2023; 11(7):1730. https://doi.org/10.3390/math11071730
Chicago/Turabian StyleBai, Yu, Li Li, Shanqing Zhang, Jianfeng Lu, and Mahmoud Emam. 2023. "Fast Frequency Domain Screen-Shooting Watermarking Algorithm Based on ORB Feature Points" Mathematics 11, no. 7: 1730. https://doi.org/10.3390/math11071730
APA StyleBai, Y., Li, L., Zhang, S., Lu, J., & Emam, M. (2023). Fast Frequency Domain Screen-Shooting Watermarking Algorithm Based on ORB Feature Points. Mathematics, 11(7), 1730. https://doi.org/10.3390/math11071730