The Convergence Rates of Large Volatility Matrix Estimator Based on Noise, Jumps, and Asynchronization
Abstract
1. Introduction
2. Methodology
2.1. Price Model
2.2. Observed Data
3. The Estimator of the Large-Volatility Matrix
4. Asymptotic Properties
5. Proofs
- If and , we have that
- If and , we obtain
- If and , we obtainThe case of and is similar to the above.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andersen, T.G.; Bollerslev, T.; Meddahi, N. Correcting the errors: Volatility forecast evaluation using high-frequency data and realized volatilities. Econometrica 2005, 73, 279–296. [Google Scholar] [CrossRef]
- Barndorff-Nielsen, O.E.; Shephard, N. Econometric analysis of realized covariation: High frequency based covariance, regression, and correlation in financial economics. Econometrica 2004, 72, 885–925. [Google Scholar] [CrossRef]
- Todorov, V. Estimation of continuous-time stochastic volatility models with jumps using high-frequency data. J. Econcometrics 2009, 148, 131–148. [Google Scholar] [CrossRef]
- Brogaard, J.A.; Hendershott, T.; Riordan, R. High frequency trading and price discovery. Rev. Financ. Stud. 2014, 27, 2267–2306. [Google Scholar] [CrossRef]
- Dai, C.; Lu, K.; Xiu, D. Knowing factors or factor loadings, or neither?Evaluating estimators of large covariance matrices with noisy and asynchronous data. J. Econcometrics 2019, 208, 43–79. [Google Scholar] [CrossRef]
- Black, F. Noise. J. Financ. 1986, 41, 529–543. [Google Scholar] [CrossRef]
- Hayashi, T.; Yoshida, N. On covariance estimation of non-synchronously observed diffusion processes. Bernoulli 2005, 11, 359–379. [Google Scholar] [CrossRef]
- Zhang, L. Estimating covariation: Epps effect, microstructure noise. J. Econom. 2011, 160, 33–47. [Google Scholar] [CrossRef]
- Aït-Sahalia, Y.; Fan, J.; Xiu, D. High-frequency covariance estimates with noisy and asynchronous financial data. J. Am. Stat. Assoc. 2010, 105, 1504–1517. [Google Scholar] [CrossRef]
- Barndorff-Nielsen, O.; Hansen, P.; Lunde, A.; Shephard, N. Multivariate realized kernels: Consistent positive semi-definite estimators of the covariation of equity prices with noise and nonsynchronous trading. J. Econom. 2011, 162, 149–169. [Google Scholar] [CrossRef]
- Christensen, K.; Kinnebrock, S.; Podolskij, M. Pre-averaging estimators of the ex-post covariance matrix in noisy diffusion models with non-synchronous data. J. Econom. 2010, 159, 116–133. [Google Scholar] [CrossRef]
- Wang, Y.; Zou, J. Vast volatility matrix estimation for high-frequency financial data. Ann. Stat. 2010, 38, 943–978. [Google Scholar] [CrossRef]
- Tao, M.; Wang, Y.; Zhou, H. Optimal sparse volatility matrix estimation for high-dimensional Itô process with measurement erro. Ann. Stat. 2013, 41, 1816–1864. [Google Scholar] [CrossRef]
- Kim, D.; Wang, Y.; Zou, J. Asymptotic theory for large volatility matrix estimation based on high-frequency financial data. Stoch. Proc. Appl. 2016, 126, 3527–3577. [Google Scholar] [CrossRef]
- Kim, D.; Kong, X.; Li, C.; Wang, Y. Adaptive thresholding for large volatility matrix estimation based on high-frequency financial data. J. Econom. 2018, 203, 69–79. [Google Scholar] [CrossRef]
- Jing, B.; Liu, Z.; Kong, X. On the estimation of integrated volatility with jumps and microstructure noise. J. Bus. Econ. Stat. 2014, 3, 457–467. [Google Scholar] [CrossRef]
- Jing, B.; Kong, X.; Liu, Z. Modeling high-frequency financial data by pure jump processes. Ann. Stat. 2012, 40, 759–784. [Google Scholar] [CrossRef]
- Kong, X.; Liu, Z.; Jing, B. Testing for pure-jump processes for high-frequency data. Ann. Stat. 2015, 43, 847–877. [Google Scholar] [CrossRef]
- Li, C.; Chen, J.; Liu, Z.; Jing, B. On integrated volatility of Itô semimartingales when sampling times are endogenous. Commun. Stat.-Theor. Methods 2014, 43, 5263–5275. [Google Scholar] [CrossRef]
- Liu, Z. Jump-robust estimation of volatility with simultaneous presence of microstructure noise and multiple observations. Financ. Stoch. 2017, 21, 427–469. [Google Scholar] [CrossRef]
- Li, C.; Guo, E. Estimation of the integrated volatility using noisy high-frequency data with jumps and endogeneity. Commun. Stat.-Theor. Methods 2018, 3, 521–531. [Google Scholar] [CrossRef]
- Jing, B.; Li, C.; Liu, Z. On estimating the integrated co-volatility using noisy high-frequency data with jumps. Commun. Stat.-Theor. Methods 2013, 42, 3889–3901. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, J.; Huang, Z. Numerical study on cavitation-vortex-noise correlation mechanism and dynamic mode decomposition of a hydrofoil. Phys. Fluids 2022, 34, 125105. [Google Scholar] [CrossRef]
- Li, R.; Zhang, H.; Chen, Z.; Yu, N.; Kong, W.; Li, T.; Wang, E.; Wu, X.; Liu, Y. Denoising method of ground-penetrating radar signal based on independent component analysis with multifractal spectrum. Measurement 2022, 192, 110886. [Google Scholar] [CrossRef]
- Yu, J.; Lu, L.; Chen, Y.; Zhu, Y.; Kong, L. An indirect eavesdropping attack of keystrokes on touch screen through acoustic sensing. IEEE Trans. Mob. Comput. 2021, 20, 337–351. [Google Scholar] [CrossRef]
- Lu, S.; Yang, B.; Xiao, Y.; Liu, S.; Liu, M.; Yin, L.; Zheng, W. Iterative reconstruction of low-dose CT based on differential sparse. Biomed. Signal. Proces. 2023, 79, 104204. [Google Scholar] [CrossRef]
- Ye, R.; Liu, P.; Shi, K.; Yan, B. State damping control: A novel simple method of rotor UAV with high performance. IEEE Access. 2020, 8, 214346–214357. [Google Scholar] [CrossRef]
- Jin, C.; Tsai, F.; Gu, Q.; Wu, B. Does the porter hypothesis work well in the emission trading schema pilot? Exploring moderating effects of institutional settings. Res. Int. Bus. Financ. 2022, 62, 101732. [Google Scholar] [CrossRef]
- Zhong, T.; Wang, W.; Lu, S.; Dong, X.; Yang, B. RMCHN: A residual modular cascaded heterogeneous network for noise suppression in DAS-VSP records. IEEE Geosci. Remote Sens. 2023, 20, 7500205. [Google Scholar] [CrossRef]
- Delbaen, F.; Schachermayer, W. A general version of the fundamental theorem of asset pricing. Math. Ann. 1994, 300, 463–520. [Google Scholar] [CrossRef]
- Zhang, L.; Mykland, P.; Aït-Sahalia, Y. A tale of two time scales: Determining integrated volatility with noisy high-frequency data. J. Am. Stat. Assoc. 2005, 100, 1394–1911. [Google Scholar] [CrossRef]
- Bickel, P.; Levina, E. Covariance regularization by thresholding. Ann. Stat. 2008, 36, 2577–2604. [Google Scholar] [CrossRef] [PubMed]
- Lam, C.; Fan, J. Sparsistency and rates of convergence in large covariance matrix estimaiton. Ann. Stat. 2009, 37, 4254–4278. [Google Scholar] [CrossRef]
- El Karoui, N. High-dimensionality effects in the markowitz problem and other quadratic programs with linear constraints: Risk underestimation. Ann. Stat. 2010, 38, 3487–3566. [Google Scholar] [CrossRef]
- Rigollet, P.; Tsybakov, A. Estimation of covariance matrices under sparsity constraints. Stat. Sin. 2012, 22, 1319–1378. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, E.; Li, C.; Tang, F. The Convergence Rates of Large Volatility Matrix Estimator Based on Noise, Jumps, and Asynchronization. Mathematics 2023, 11, 1425. https://doi.org/10.3390/math11061425
Guo E, Li C, Tang F. The Convergence Rates of Large Volatility Matrix Estimator Based on Noise, Jumps, and Asynchronization. Mathematics. 2023; 11(6):1425. https://doi.org/10.3390/math11061425
Chicago/Turabian StyleGuo, Erlin, Cuixia Li, and Fengqin Tang. 2023. "The Convergence Rates of Large Volatility Matrix Estimator Based on Noise, Jumps, and Asynchronization" Mathematics 11, no. 6: 1425. https://doi.org/10.3390/math11061425
APA StyleGuo, E., Li, C., & Tang, F. (2023). The Convergence Rates of Large Volatility Matrix Estimator Based on Noise, Jumps, and Asynchronization. Mathematics, 11(6), 1425. https://doi.org/10.3390/math11061425