The Multivariate Skewed Log-Birnbaum–Saunders Distribution and Its Associated Regression Model
Abstract
1. Introduction
2. Multivariate Skew-Normal Distribution
3. Multivariate Skewed Unit-Sinh-Normal Distribution
- (1)
- for
- (2)
- The conditional pdf of is given by
- (3)
- The cumulative distribution function (cdf) of is given bywhere is the Owen function; see [28].
- (1)
- For and applying the integral over all subindex k (given by ), other than j, we obtain,Now, using the transformation for allwhere the second last result follows from Arnold et al. [20].
- (2)
- Letthen, with the transformation , it is found that and and, by the Transformation Theorem, it follows:
- (3)
- It has thatthrough the transformation , it follows thatwhere the last equality follows the properties of the cdf of the SN distribution, which is widely known in the literature.
Moments and Correlation
4. Multivariate Skewed USHN Regression Model
Statistical Inference
5. Numerical Results
5.1. Simulation Study
- (1)
- Generate a uniform random and a random number with distribution .
- (2)
- Generate with the inverse of the standard normal function.
- (3)
- Let .
- (4)
- Compute .
- (5)
- Generate another uniform random number (independent of ) and also with distribution
- (6)
- Compute the error such that where is the inverse function of the standard skew-normal and is the inverse of the hyperbolic sine function.
- (7)
- Let . This algorithm is generated n times, finally obtaining the USHN bivariate random sample.
5.2. Illustration 1
5.3. Illustration 2
6. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Expected Value of the LSHN Distribution
Appendix B. Elements of the Observed Information for the SMVSHN Regression Model
References
- Ferrari, S.; Cribari-Neto, F. Beta regression for modelling rates and proportions. J. Appl. Stat. 2004, 31, 799–815. [Google Scholar] [CrossRef]
- Kumaraswamy, P. A generalized probability density function for double-bounded random processes. J. Hydrol. 1980, 46, 79–88. [Google Scholar] [CrossRef]
- Martínez-Flórez, G.; Tovar-Falón, R. Regression Models Based on the Unit Sinh-Normal Distribution. Mathematics 2021, 9, 1231. [Google Scholar] [CrossRef]
- Martínez-Flórez, G.; Azevedo-Farias, R.B.; Tovar-Falón, R. New Class of Unit-Power-Skew-Normal Distribution and Its Associated Regression Model for Bounded Responses. Mathematics 2022, 10, 3035. [Google Scholar] [CrossRef]
- Kieschnick, R.; Mccullough, B.D. Regression analysis of variates observed on (0,1). Stat. Model. 2003, 3, 193–213. [Google Scholar] [CrossRef]
- Mazucheli, J.; Menezes, A.F.B.; Ghitany, M.E. The unit-Weibull distribution and associated inference. J. Appl. Probab. Stat. 2018, 13, 1–22. [Google Scholar]
- Menezes, A.F.B.; Mazucheli, J.; Dey, S. The unit-logistic distribution: Different methods of estimation. Pesqui. Oper. 2018, 38, 555–578. [Google Scholar] [CrossRef]
- Rieck, J.R.; Nedelman, J.R. A log-linear model for the Birnbaum-Saunders distribution. Technometrics 1991, 33, 51–60. [Google Scholar]
- Martínez-Flórez, G.; Elal-Olivero, D.; Barrera-Causil, C. Extended Generalized Sinh-Normal Distribution. Mathematics 2021, 9, 2793. [Google Scholar] [CrossRef]
- Lemonte, A.J. A log-Birnbaum-Saunders regression model with asymmetric errors. J. Stat. Comput. Simul. 2011, 82, 1775–1787. [Google Scholar] [CrossRef]
- Leiva, V.; Vilca-Labra, F.; Balakrishnan, N.; Sanhueza, A. A skewed sinh-normal distribution and its properties and application to air pollution. Commun. Stat. Theory Methods 2010, 39, 426–443. [Google Scholar] [CrossRef]
- Moreno-Arenas, G.; Martínez-Flórez, G.; Barrera-Causil, C. Proportional Hazard Birnbaum-Saunders Distribution with Application to the Survival Data Analysis. Rev. Colomb. Estad. 2016, 39, 129–147. [Google Scholar] [CrossRef]
- Birnbaum, Z.W.; Saunders, S.C. A new family of life distributions. J. Appl. Probab. 1969, 6, 319–327. [Google Scholar] [CrossRef]
- Martínez-Flórez, G.; Bolfarine, H.; Gómez, H.W. The Log-Linear Birnbaum-Saunders Power Model. Methodol. Comput. Appl. Probab. 2017, 19, 913–933. [Google Scholar] [CrossRef]
- Díaz–García, J.A.; Domínguez–Molina, J.R. Some generalisations of Birnbaum–Saunders and sinh–normal distributions. Int. Math. Forum 2014, 1, 1709–1727. [Google Scholar]
- Lemonte, A. A Multivariate Birnbaum-Saunders regression model. J. Stat. Comput. Simul. 2013, 12, 2244–2257. [Google Scholar] [CrossRef]
- Marchant, C.; Leiva, V.; Cysneiros, F. A multivariate log-linear model for Birnbaum-Saunders distributions. IEEE Trans. Reliab. 2016, 65, 816–864. [Google Scholar] [CrossRef]
- Martínez-Flórez, G.; Azevedo-Farias, R.B.; Tovar-Falón, R. An exponentiated multivariate extension for the Birnbaum-Saunders log-linear model. Mathematics 2022, 10, 1299. [Google Scholar] [CrossRef]
- Mazucheli, J.; Menezes, A.; Dey, S. The unit-Birnbaum-Saunders distribution with applications. Chil. J. Stat. 2018, 9, 47–57. [Google Scholar]
- Arnold, B.C.; Castillo, E.; Sarabia, J.M. Conditionally specified multivariate skewed distributions. Sankhya A 2002, 64, 206–226. [Google Scholar]
- Arnold, B.C.; Castillo, E.; Sarabia, J.M. Conditionally specified distributions. In Lecture Notes in Statistics; Berger, J., Fienberg, J., Gani, J., Krickeberg, I., Singer, B., Eds.; Springer: New York, NY, USA, 1992; Volume 73. [Google Scholar]
- Azzalini, A. A class of distributions which includes the normal ones. Scand. J. Stat. 1985, 12, 171–178. [Google Scholar]
- Lemonte, A.J.; Martínez-Flórez, G.; Moreno-Arenas, G. Multivariate Birnbaum-Saunders distribution: Properties and associated inference. J. Stat. Comput. Simul. 2015, 85, 374–392. [Google Scholar] [CrossRef]
- Martínez-Flórez, G.; Azevedo-Farias, R.; Moreno-Arenas, G. Multivariate log-Birnbaum-Saunders regression models. Commun. Stat. Theory Methods 2017, 46, 10166–10178. [Google Scholar] [CrossRef]
- Cepeda-Cuervo, E.; Achcar, J.A.; Garrido-Lopera, L. Bivariate beta regression models: Joint modeling of the mean, dispersion and association parameters. J. Appl. Stat. 2014, 41, 677–687. [Google Scholar] [CrossRef]
- Souza, D.F.; Moura, F.A.S. Multivariate Beta Regression with Application in Small Area Estimation. J. Off. Stat. 2016, 32, 747–768. [Google Scholar] [CrossRef]
- Lemonte, A.J.; Moreno-Arenas, G. On a multivariate regression model for rates and proportions. J. Appl. Stat. 2019, 46, 1084–1106. [Google Scholar] [CrossRef]
- Tables for computing bi-variate normal probabilities. Ann. Math. Stat. 1976, 27, 1075–1090.
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: http://www.R-project.org (accessed on 31 August 2022).
- Freeman, D.G. Drunk Driving Legislation and Traffic Fatalities: New Evidence on BAC 08 Laws. Contemp. Econ. Policy 2007, 25, 293–308. [Google Scholar] [CrossRef]
- Shea, J.M.; Brown, K.J. Wooldridge: 115 Data Sets. In Introductory Econometrics: A Modern Approach, 7e; Wooldridge, J.M., Ed.; R package version 1.4-2; Cengage Learning: Boston, MA, USA, 2022. [Google Scholar]
- Nelsen, R.B. An Introduction to Copulas; Springer Series in Statistics; Springer: New York, NY, USA, 2006; p. 272. [Google Scholar]
- Akaike, H. A new look at statistical model identification. IEEE Trans. Autom. Control. 1974, AU-19, 716–722. [Google Scholar] [CrossRef]
- Schwarz, G. Estimating the dimension of a model. Ann. Stat. 1978, 6, 461–464. [Google Scholar] [CrossRef]
- Justel, A.; Peña, D.; Zamar, Z. A multivariate Kolmogorov-Smirnov test of goodness of fit. Stat. Probab. Lett. 1997, 35, 251–259. [Google Scholar] [CrossRef]
- Barros, M.; Galea, M.; Gonzalez, M.; Leiva, V. Influence diagnostics in the tobit censored response model. Stat. Methods Appl. 2010, 19, 379–397. [Google Scholar] [CrossRef]
- Ortega, E.M.; Bolfarine, H.; Paula, G.A. Influence diagnostics in generalized log-gamma regression models. Comput. Stat. Data Anal. 2003, 42, 165–186. [Google Scholar] [CrossRef]




| 0.085 | 0.5 | 0.75 | 1.5 | 2.25 | 3.0 | 5.0 | 7.5 | 10.0 | ||
|---|---|---|---|---|---|---|---|---|---|---|
| 0.095 | 0.5124 | 0.3401 | 0.3410 | 0.3410 | 0.3388 | 0.3347 | 0.3077 | 0.2846 | 0.2759 | |
| 0.45 | 0.3513 | 0.3160 | 0.3169 | 0.3173 | 0.3155 | 0.3117 | 0.2716 | 0.2239 | 0.1966 | |
| 0.75 | 0.3524 | 0.3171 | 0.3181 | 0.3183 | 0.3165 | 0.3126 | 0.2722 | 0.2243 | 0.1969 | |
| 0.5 | 1.0 | 0.3528 | 0.3177 | 0.3186 | 0.3188 | 0.3168 | 0.3128 | 0.2722 | 0.2243 | 0.1969 |
| 2.0 | 0.3507 | 0.3163 | 0.3171 | 0.3169 | 0.3148 | 0.3106 | 0.2697 | 0.2220 | 0.1949 | |
| 3.0 | 0.3456 | 0.3119 | 0.3126 | 0.3122 | 0.3099 | 0.3057 | 0.2650 | 0.2180 | 0.1915 | |
| 5.0 | 0.3261 | 0.2718 | 0.2722 | 0.2713 | 0.2690 | 0.2650 | 0.2318 | 0.1964 | 0.1775 | |
| 7.5 | 0.3170 | 0.2240 | 0.2243 | 0.2234 | 0.2213 | 0.2180 | 0.1964 | 0.1774 | 0.1693 | |
| 10.0 | 0.3188 | 0.1967 | 0.1969 | 0.1962 | 0.1943 | 0.1915 | 0.1775 | 0.1693 | 0.1684 | |
| 0.095 | 0.8258 | 0.5950 | 0.6003 | 0.6123 | 0.6177 | 0.6183 | 0.5809 | 0.5252 | 0.4904 | |
| 0.45 | 0.6192 | 0.5269 | 0.5321 | 0.5442 | 0.5504 | 0.5517 | 0.5070 | 0.4343 | 0.3845 | |
| 0.75 | 0.6260 | 0.5331 | 0.5383 | 0.5504 | 0.5565 | 0.5576 | 0.5120 | 0.4381 | 0.3877 | |
| 1.0 | 0.6311 | 0.5379 | 0.5431 | 0.5551 | 0.5611 | 0.5621 | 0.5156 | 0.4408 | 0.3900 | |
| 1.5 | 2.0 | 0.6425 | 0.5497 | 0.5548 | 0.5662 | 0.5717 | 0.5722 | 0.5232 | 0.4460 | 0.3941 |
| 3.0 | 0.6446 | 0.5527 | 0.5576 | 0.5685 | 0.5735 | 0.5736 | 0.5232 | 0.4451 | 0.3932 | |
| 5.0 | 0.6140 | 0.5079 | 0.5120 | 0.5207 | 0.5241 | 0.5232 | 0.4774 | 0.4096 | 0.3661 | |
| 7.5 | 0.5695 | 0.4349 | 0.4381 | 0.4444 | 0.4464 | 0.4451 | 0.4096 | 0.3610 | 0.3315 | |
| 10.0 | 0.5434 | 0.3850 | 0.3877 | 0.3930 | 0.3945 | 0.3932 | 0.3661 | 0.3315 | 0.3117 | |
| 0.095 | 0.9317 | 0.6733 | 0.6812 | 0.7013 | 0.7131 | 0.7184 | 0.6878 | 0.6282 | 0.5857 | |
| 0.45 | 0.6975 | 0.5875 | 0.5945 | 0.6128 | 0.6242 | 0.6294 | 0.5900 | 0.5163 | 0.4623 | |
| 0.75 | 0.7073 | 0.5958 | 0.6030 | 0.6214 | 0.6327 | 0.6379 | 0.5976 | 0.5224 | 0.4677 | |
| 1.0 | 0.7154 | 0.6028 | 0.6099 | 0.6284 | 0.6397 | 0.6448 | 0.6036 | 0.5273 | 0.4718 | |
| 2.5 | 2.0 | 0.7375 | 0.6222 | 0.6294 | 0.6478 | 0.6588 | 0.6635 | 0.6194 | 0.5396 | 0.4820 |
| 3.0 | 0.7469 | 0.6307 | 0.6379 | 0.6559 | 0.6665 | 0.6708 | 0.6250 | 0.5432 | 0.4847 | |
| 5.0 | 0.7243 | 0.5912 | 0.5976 | 0.6132 | 0.6219 | 0.6250 | 0.5823 | 0.5092 | 0.4579 | |
| 7.5 | 0.6772 | 0.5172 | 0.5224 | 0.5348 | 0.5414 | 0.5432 | 0.5092 | 0.4534 | 0.4157 | |
| 10.0 | 0.6430 | 0.4632 | 0.4677 | 0.4781 | 0.4834 | 0.4847 | 0.4579 | 0.4157 | 0.3882 | |
| 0.095 | 0.9765 | 0.7038 | 0.7128 | 0.7374 | 0.7531 | 0.7616 | 0.7367 | 0.6801 | 0.6363 | |
| 0.45 | 0.7267 | 0.6135 | 0.6214 | 0.6428 | 0.6570 | 0.6645 | 0.6290 | 0.5567 | 0.5025 | |
| 0.75 | 0.7379 | 0.6227 | 0.6307 | 0.6523 | 0.6666 | 0.6742 | 0.6379 | 0.5642 | 0.5090 | |
| 1.0 | 0.7474 | 0.6307 | 0.6387 | 0.6605 | 0.6749 | 0.6824 | 0.6453 | 0.5705 | 0.5144 | |
| 3.5 | 2.0 | 0.7755 | 0.6542 | 0.6624 | 0.6845 | 0.6988 | 0.7061 | 0.6662 | 0.5874 | 0.5288 |
| 3.0 | 0.7895 | 0.6659 | 0.6742 | 0.6962 | 0.7102 | 0.7172 | 0.6755 | 0.5945 | 0.5345 | |
| 5.0 | 0.7730 | 0.6303 | 0.6379 | 0.6576 | 0.6698 | 0.6755 | 0.6367 | 0.5633 | 0.5098 | |
| 7.5 | 0.7297 | 0.5579 | 0.5642 | 0.5805 | 0.5902 | 0.5945 | 0.5633 | 0.5064 | 0.4656 | |
| 10.0 | 0.6951 | 0.5035 | 0.5090 | 0.5230 | 0.5311 | 0.5345 | 0.5098 | 0.4656 | 0.4348 | |
| 0.095 | 0.9938 | 0.7228 | 0.7324 | 0.7601 | 0.7790 | 0.7903 | 0.7707 | 0.7182 | 0.6763 | |
| 0.45 | 0.7446 | 0.6323 | 0.6405 | 0.6643 | 0.6808 | 0.6903 | 0.6583 | 0.5881 | 0.5346 | |
| 0.75 | 0.7563 | 0.6418 | 0.6502 | 0.6743 | 0.6910 | 0.7006 | 0.6681 | 0.5967 | 0.5421 | |
| 1.0 | 0.7669 | 0.6505 | 0.6590 | 0.6834 | 0.7002 | 0.7099 | 0.6767 | 0.6040 | 0.5486 | |
| 5.0 | 2.0 | 0.7992 | 0.6772 | 0.6860 | 0.7110 | 0.7281 | 0.7377 | 0.7021 | 0.6254 | 0.5672 |
| 3.0 | 0.8170 | 0.6917 | 0.7006 | 0.7258 | 0.7428 | 0.7523 | 0.7149 | 0.6358 | 0.5760 | |
| 5.0 | 0.8061 | 0.6597 | 0.6681 | 0.6913 | 0.7066 | 0.7149 | 0.6803 | 0.6084 | 0.5544 | |
| 7.5 | 0.7672 | 0.5894 | 0.5967 | 0.6164 | 0.6291 | 0.6358 | 0.6084 | 0.5521 | 0.5102 | |
| 10.0 | 0.7350 | 0.5357 | 0.5421 | 0.5594 | 0.5703 | 0.5760 | 0.5544 | 0.5102 | 0.4776 |
| RB | RMSE | LCI | CP | RB | RMSE | LCI | CP | RB | RMSE | LCI | CP | ||
| 40 | 0.2279 | 0.6529 | 4.3944 | 0.9992 | 0.1858 | 0.5632 | 4.2347 | 1.0000 | 0.1588 | 0.4897 | 4.1603 | 1.0000 | |
| 0.5797 | 0.3882 | 3.9557 | 1.0000 | 0.4186 | 0.2454 | 3.7913 | 1.0000 | 0.2729 | 0.1752 | 3.7730 | 1.0000 | ||
| 0.1648 | 0.0446 | 0.6471 | 0.7258 | 0.1059 | 0.0301 | 0.5543 | 0.7723 | 0.0844 | 0.0226 | 0.5062 | 0.8373 | ||
| 0.0631 | 0.0295 | 0.6283 | 0.9223 | 0.0414 | 0.0218 | 0.5472 | 0.9272 | 0.0314 | 0.0189 | 0.5046 | 0.9346 | ||
| 0.0225 | 0.0313 | 0.6037 | 0.8949 | 0.0210 | 0.0228 | 0.5251 | 0.9103 | 0.0162 | 0.0166 | 0.4833 | 0.9279 | ||
| 0.1725 | 0.1681 | 1.1539 | 0.6816 | 0.1047 | 0.0956 | 0.9631 | 0.7742 | 0.0838 | 0.0685 | 0.8842 | 0.7535 | ||
| 0.0546 | 0.4598 | 4.5055 | 0.8934 | 0.0308 | 0.4418 | 4.6131 | 0.9272 | 0.0284 | 0.3935 | 4.4996 | 0.9519 | ||
| 0.3359 | 0.6907 | 9.3760 | 0.7098 | 0.2693 | 1.0002 | 6.5228 | 0.8036 | 0.3444 | 1.5870 | 6.2103 | 0.9096 | ||
| 0.1705 | 0.7552 | 3.4734 | 0.8446 | 0.2084 | 4.6158 | 8.5285 | 0.7551 | 0.2087 | 6.2440 | 10.3860 | 0.7217 | ||
| 80 | 0.0422 | 0.1841 | 2.6664 | 1.0000 | 0.0424 | 0.1732 | 2.6472 | 1.0000 | 0.0396 | 0.1109 | 2.7276 | 1.0000 | |
| 0.1296 | 0.0798 | 2.6892 | 1.0000 | 0.2238 | 0.0657 | 2.8055 | 1.0000 | 0.2974 | 0.0727 | 2.7864 | 1.0000 | ||
| 0.1580 | 0.0270 | 0.4598 | 0.8239 | 0.1048 | 0.0167 | 0.3987 | 0.8683 | 0.0784 | 0.0099 | 0.3591 | 0.8871 | ||
| 0.0549 | 0.0141 | 0.4374 | 0.9282 | 0.0403 | 0.0091 | 0.3740 | 0.9424 | 0.0306 | 0.0079 | 0.3440 | 0.9392 | ||
| 0.0173 | 0.0118 | 0.4293 | 0.9276 | 0.0152 | 0.0092 | 0.3683 | 0.9380 | 0.0051 | 0.0068 | 0.3269 | 0.9286 | ||
| 0.1698 | 0.1033 | 0.7948 | 0.7658 | 0.1040 | 0.0541 | 0.6637 | 0.8320 | 0.0797 | 0.0336 | 0.5786 | 0.8199 | ||
| 0.0301 | 0.2265 | 3.0365 | 0.9973 | 0.0289 | 0.1868 | 2.9427 | 0.9993 | 0.0223 | 0.1192 | 2.7508 | 1.0000 | ||
| 0.1044 | 0.4867 | 7.9724 | 0.9606 | 0.2363 | 0.8463 | 5.8032 | 1.0000 | 0.2265 | 1.2797 | 5.8860 | 1.0000 | ||
| 0.1038 | 0.1931 | 1.8814 | 0.9043 | 0.1782 | 0.7432 | 4.0199 | 0.9170 | 0.1674 | 1.4969 | 6.6811 | 0.8465 | ||
| 120 | 0.0363 | 0.0903 | 2.2934 | 1.0000 | 0.0313 | 0.0793 | 2.1980 | 1.0000 | 0.0208 | 0.1048 | 2.0728 | 1.0000 | |
| 0.1172 | 0.0413 | 2.6855 | 1.0000 | 0.1760 | 0.0594 | 2.3182 | 1.0000 | 0.1853 | 0.0613 | 2.4098 | 1.0000 | ||
| 0.1522 | 0.0196 | 0.3802 | 0.8248 | 0.1037 | 0.0112 | 0.3217 | 0.8755 | 0.0776 | 0.0090 | 0.2899 | 0.9029 | ||
| 0.0537 | 0.0078 | 0.3533 | 0.9294 | 0.0375 | 0.0062 | 0.3008 | 0.9431 | 0.0306 | 0.0051 | 0.2762 | 0.9444 | ||
| 0.0043 | 0.0092 | 0.3635 | 0.9408 | 0.0116 | 0.0056 | 0.2964 | 0.9448 | 0.0020 | 0.0052 | 0.2672 | 0.9410 | ||
| 0.1675 | 0.0790 | 0.6467 | 0.8606 | 0.1042 | 0.0357 | 0.5260 | 0.8499 | 0.0794 | 0.0304 | 0.4765 | 0.8885 | ||
| 0.0103 | 0.0793 | 2.2790 | 1.0000 | 0.0034 | 0.0690 | 2.1409 | 1.0000 | 0.0104 | 0.1054 | 2.2788 | 1.0000 | ||
| 0.0599 | 0.4395 | 6.8628 | 1.0000 | 0.0990 | 0.5798 | 3.1258 | 1.0000 | 0.2055 | 0.5280 | 4.7802 | 1.0000 | ||
| 0.0909 | 0.1370 | 1.5647 | 0.9151 | 0.0893 | 0.5541 | 3.2542 | 0.9274 | 0.1199 | 1.3591 | 4.5893 | 0.9413 | ||
| 200 | 0.0055 | 0.0611 | 1.5785 | 1.0000 | 0.0073 | 0.0573 | 1.5689 | 1.0000 | 0.0012 | 0.0603 | 1.5590 | 1.0000 | |
| 0.1022 | 0.0350 | 1.7030 | 1.0000 | 0.0316 | 0.0316 | 1.8231 | 1.0000 | 0.1446 | 0.0280 | 1.9242 | 1.0000 | ||
| 0.1299 | 0.0186 | 0.2872 | 0.8766 | 0.0905 | 0.0100 | 0.2490 | 0.8795 | 0.0656 | 0.0064 | 0.2220 | 0.9357 | ||
| 0.0360 | 0.0055 | 0.2693 | 0.9552 | 0.0314 | 0.0037 | 0.2323 | 0.9481 | 0.0260 | 0.0029 | 0.2103 | 0.9487 | ||
| 0.0014 | 0.0053 | 0.2691 | 0.9464 | 0.0051 | 0.0035 | 0.2280 | 0.9438 | 0.0011 | 0.0028 | 0.2041 | 0.9455 | ||
| 0.1407 | 0.0701 | 0.4915 | 0.9187 | 0.0859 | 0.0344 | 0.4086 | 0.9020 | 0.0724 | 0.0239 | 0.3628 | 0.8919 | ||
| 0.0063 | 0.0605 | 1.6167 | 1.0000 | 0.0028 | 0.0645 | 1.6578 | 1.0000 | 0.0095 | 0.0673 | 1.6935 | 1.0000 | ||
| 0.0527 | 0.2503 | 5.3491 | 1.0000 | 0.0508 | 0.1961 | 2.2176 | 1.0000 | 0.0672 | 0.1795 | 2.5655 | 1.0000 | ||
| 0.0864 | 0.1210 | 1.0579 | 0.9497 | 0.0822 | 0.4112 | 2.1510 | 0.9580 | 0.0734 | 0.8740 | 3.2651 | 0.9598 | ||
| Parameters | BVSJB | BVBeta | BVSUSHN |
|---|---|---|---|
| KS test (-value) | |||
| AIC | |||
| BIC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Flórez, G.; Vergara-Cardozo, S.; Tovar-Falón, R.; Rodriguez-Quevedo, L. The Multivariate Skewed Log-Birnbaum–Saunders Distribution and Its Associated Regression Model. Mathematics 2023, 11, 1095. https://doi.org/10.3390/math11051095
Martínez-Flórez G, Vergara-Cardozo S, Tovar-Falón R, Rodriguez-Quevedo L. The Multivariate Skewed Log-Birnbaum–Saunders Distribution and Its Associated Regression Model. Mathematics. 2023; 11(5):1095. https://doi.org/10.3390/math11051095
Chicago/Turabian StyleMartínez-Flórez, Guillermo, Sandra Vergara-Cardozo, Roger Tovar-Falón, and Luisa Rodriguez-Quevedo. 2023. "The Multivariate Skewed Log-Birnbaum–Saunders Distribution and Its Associated Regression Model" Mathematics 11, no. 5: 1095. https://doi.org/10.3390/math11051095
APA StyleMartínez-Flórez, G., Vergara-Cardozo, S., Tovar-Falón, R., & Rodriguez-Quevedo, L. (2023). The Multivariate Skewed Log-Birnbaum–Saunders Distribution and Its Associated Regression Model. Mathematics, 11(5), 1095. https://doi.org/10.3390/math11051095

