Geometric Approximation of Point Interactions in Two-Dimensional Domains for Non-Self-Adjoint Operators
Abstract
:1. Introduction
2. Problem and Main Results
3. Auxiliary Statements
4. Closedness and -Sectoriality
5. Resolvent Sets
6. Convergence
7. Spectrum
Funding
Data Availability Statement
Conflicts of Interest
References
- Fermi, E. Sul moto dei neutroni nelle sostanze idrogenate. Ric. Sci. 1936, 7, 13–52, English translation in Fermi, E. Collected papers; University of Chicago Press: Chicago, IL, USA, 1962; Volume I, pp. 980–1016. [Google Scholar]
- Berezin, F.A.; Faddeev, L.D. A remark on Schrödinger’s equation with a singular potential. Sov. Math. Doklady 1961, 2, 372–375. [Google Scholar]
- Albeverio, S.; Gesztesy, F.; egh-Krohn, R.H.; Holden, H. Solvable Models in Quantum Mechanics, 2nd ed.; AMS Chelsea Publishing: Providence, RI, USA, 2005. [Google Scholar]
- Albeverio, S.; Kurasov, P. Singular Perturbations of Differential Operators. Solvable Schrödinger Type Operators; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Exner, P.; Neidhardt, H.; Zagrebnov, V.A. Potential approximations to δ′: An inverse Klauder phenomenon with norm-resolvent convergence. Commun. Math. Phys. 2001, 224, 593–612. [Google Scholar] [CrossRef]
- Golovaty, Y.D.; Hryniv, R.O. On norm resolvent convergence of Schrödinger operators with δ′-like potentials. J. Phys. A Math. Theor. 2010, 43, 155204. [Google Scholar] [CrossRef]
- Golovaty, Y. 2D Schrödinger operators with singular potentials concentrated near curves. Appl. Anal. 2022, 101, 4512–4532. [Google Scholar] [CrossRef]
- Golovaty, Y.D.; Hryniv, R.O. Norm resolvent convergence of singularly scaled Schrödinger operators and δ′ potentials. Proc. R. Soc. Edinb. Sect. A Math. 2013, 143, 791–816. [Google Scholar] [CrossRef]
- Golovaty, Y.D. Schrödinger Operators with Singular Rank-Two Perturbations and Point Interactions. Integ. Equat. Oper. Theory 2018, 90, 57. [Google Scholar] [CrossRef]
- Golovaty, Y.D. 1D Schrödinger Operators with Short Range Interactions: Two-Scale Regularization of Distributional Potentials. Integ. Equat. Oper. Theory 2013, 75, 341–362. [Google Scholar] [CrossRef]
- Cheon, T.; Exner, P. An approximation to δ′ couplings on graphs. J. Phys. A. Math. Gen. 2004, 37, L329–L336. [Google Scholar] [CrossRef]
- Exner, P.; Manko, S.S. Approximations of Quantum-Graph Vertex Couplings by Singularly Scaled Rank-One Operators. Lett. Math. Phys. 2014, 104, 1079–1094. [Google Scholar] [CrossRef]
- Zolotaryuk, A.V. Families of one-point interactions resulting from the squeezing limit of the sum of two- and three-delta-like potentials. J. Phys. A Math. Theor. 2017, 50, 225303. [Google Scholar] [CrossRef]
- Albeverio, S.; Nizhnik, L. Approximation of general zero-range potentials. Ukrainian Math. J. 2000, 52, 582–589. [Google Scholar] [CrossRef]
- Borisov, D.I.; Exner, P. Approximation of point interactions by geometric perturbations in two-dimensional domains. Bull. Math. Sci. 2020. [Google Scholar] [CrossRef]
- Marchenko, V.A.; Khruslov, E.Y. Boundary Value Problems in Domains with a Fine-Grained Boundary; Naukova Dumka: Kiev, USSR, 1974. (In Russian) [Google Scholar]
- Maz’ya, V.G.; Nazarov, S.A.; Plamenevski, B.A. Asymptotic expansions of the eigenvalues of boundary value problems for the Laplace operator in domains with small holes. Math. USSR-Izv. 1985, 24, 321–345. [Google Scholar] [CrossRef]
- Díaz, J.I.; Gómez-Castro, D.; Shaposhnikova, T.A. Nonlinear Reaction-Diffusion Processes for Nanocomposites: Anomalous Improved Homogenization; De Gruyter: Berlin, Germany, 2021. [Google Scholar]
- Olejnik, O.A.; Shamaev, A.S.; Yosifyan, G.A. Mathematical Problems in Elasticity and Homogenization; Elsevier: Amsterdam, The Netherland, 1992. [Google Scholar]
- Maz’ya, V.; Nazarov, S.; Plamenevskij, B.A. Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains; Birkhäuser: Basel, Switzerland, 2000; Volume 1–2. [Google Scholar]
- Il’in, A.M. Matching of Asymptotic Expansions of Solutions of Boundary Value Problems; American Mathematical Society: Providence, RI, USA, 1992. [Google Scholar]
- Borisov, D.I.; Mukhametrakhimova, A.I. On norm resolvent convergence for elliptic operators in multi-dimensional domains with small holes. J. Math. Sci. 2018, 232, 283–298. [Google Scholar] [CrossRef]
- Borisov, D. On a PT-symmetric waveguide with a pair of small holes. Proc. Steklov Inst. Math. 2013, 281, 5–21. [Google Scholar] [CrossRef]
- Borisov, D.; Cardone, G.; Durante, T. Homogenization and uniform resolvent convergence for elliptic operators in a strip perforated along a curve. Proc. Roy. Soc. Edinburgh. Sect. A Math. 2016, 146, 1115–1158. [Google Scholar] [CrossRef]
- Anné, C.; Post, O. Wildly perturbed manifolds: Norm resolvent and spectral convergence. J. Spectr. Theory 2021, 11, 229–279. [Google Scholar] [CrossRef]
- Borisov, D.I.; Kříž, J. Operator estimates for non-periodically perforated domains with Dirichlet and nonlinear Robin conditions: Vanishing limit. Anal. Math. Phys. 2023, 13, 5. [Google Scholar] [CrossRef]
- Borisov, D.I.; Mukhametrakhimova, A.I. Uniform convergence and asymptotics for problems in domains finely perforated along a prescribed manifold in the case of the homogenized Dirichlet condition. Sb. Math. 2021, 212, 1068–1121. [Google Scholar] [CrossRef]
- Cherednichenko, K.; Dondl, P.; Rösler, F. Norm-resolvent convergence in perforated domains. Asymp. Anal. 2018, 110, 163–184. [Google Scholar] [CrossRef]
- Khrabustovskyi, A.; Plum, M. Operator estimates for homogenization of the Robin Laplacian in a perforated domain. J. Diff. Equats. 2022, 338, 474–517. [Google Scholar] [CrossRef]
- Khrabustovskyi, A.; Post, O. Operator estimates for the crushed ice problem. Asymp. Anal. 2018, 110, 137–161. [Google Scholar] [CrossRef]
- Pastukhova, S.E. Resolvent approximations in L2-norm for elliptic operators acting in a perforated space. Contem. Math. Fund. Direct. 2020, 66, 314–334. (In Russian) [Google Scholar] [CrossRef]
- Suslina, T.A. Spectral approach to homogenization of elliptic operators in a perforated space. Rev. Math. Phys. 2018, 30, 1840016. [Google Scholar] [CrossRef]
- Kato, T. Perturbation Theory for Linear Operators; Springer: New York, NY, USA, 1966; 620p. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borisov, D.I. Geometric Approximation of Point Interactions in Two-Dimensional Domains for Non-Self-Adjoint Operators. Mathematics 2023, 11, 947. https://doi.org/10.3390/math11040947
Borisov DI. Geometric Approximation of Point Interactions in Two-Dimensional Domains for Non-Self-Adjoint Operators. Mathematics. 2023; 11(4):947. https://doi.org/10.3390/math11040947
Chicago/Turabian StyleBorisov, Denis Ivanovich. 2023. "Geometric Approximation of Point Interactions in Two-Dimensional Domains for Non-Self-Adjoint Operators" Mathematics 11, no. 4: 947. https://doi.org/10.3390/math11040947
APA StyleBorisov, D. I. (2023). Geometric Approximation of Point Interactions in Two-Dimensional Domains for Non-Self-Adjoint Operators. Mathematics, 11(4), 947. https://doi.org/10.3390/math11040947