Finite-Time Command Filtered Control for Oxygen-Excess Ratio of Proton Exchange Membrane Fuel Cell Systems with Prescribed Performance
Abstract
:1. Introduction
2. Air Supply Model Development of the PEMFC System
2.1. Cathode Pressures Dynamics
2.2. Air Supply Manifold Pressure Dynamics
2.3. Air Compressor Model
2.4. Mathematical Model of PEMFC Air Supply System
3. Adaptive Robust Controller and Stability Analysis
3.1. Controller Design Using FTCFC Technique
3.2. Stability Analysis
4. Simulation and Experiment Results
4.1. Numerical Simulation
4.1.1. Simulation Setup
4.1.2. Simulation Results
4.2. Experiment Verification
4.2.1. HIL Experiment Description
4.2.2. Experimental Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Trinh, H.-A.; Truong, H.V.A.; Do, T.C.; Nguyen, M.H.; Du Phan, V.; Ahn, K.K. Optimization-based energy management strategies for hybrid construction machinery: A review. Energy Rep. 2022, 8, 6035–6057. [Google Scholar] [CrossRef]
- Fernandez, A.M.; Kandidayeni, M.; Boulon, L.; Chaoui, H. An Adaptive State Machine Based Energy Management Strategy for a Multi-Stack Fuel Cell Hybrid Electric Vehicle. IEEE Trans. Veh. Technol. 2020, 69, 220–234. [Google Scholar] [CrossRef]
- Trinh, H.-A.; Phan, V.-D.; Truong, H.-V.; Ahn, K.K. Energy Management Strategy for PEM Fuel Cell Hybrid Power System Considering DC Bus Voltage Regulation. Electronics 2022, 11, 2722. [Google Scholar] [CrossRef]
- Trinh, H.-A.; Truong, H.-V.; Ahn, K.K. Development of Fuzzy-Adaptive Control Based Energy Management Strategy for PEM Fuel Cell Hybrid Tramway System. Appl. Sci. 2022, 12, 3880. [Google Scholar] [CrossRef]
- Derbeli, M.; Napole, C.; Barambones, O. Machine Learning Approach for Modeling and Control of a Commercial Heliocentris FC50 PEM Fuel Cell System. Mathematics 2021, 9, 2068. [Google Scholar] [CrossRef]
- Arce, A.; del Real, A.J.; Bordons, C.; Ramirez, D.R. Real-Time Implementation of a Constrained MPC for Efficient Airflow Control in a PEM Fuel Cell. IEEE Trans. Ind. Electron. 2010, 57, 1892–1905. [Google Scholar] [CrossRef]
- Pukrushpan, J.T. Modeling and Control of Fuel Cell Systems and Fuel Processors; University of Michigan: Ann Arbor, MI, USA, 2003. [Google Scholar]
- Li, Q.; Yang, W.; Yin, L.; Chen, W. Real-Time Implementation of Maximum Net Power Strategy Based on Sliding Mode Variable Structure Control for Proton-Exchange Membrane Fuel Cell System. IEEE Trans. Transp. Electrif. 2020, 6, 288–297. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, J.; Chen, H.; Yan, C. Air supply regulation for PEMFC systems based on uncertainty and disturbance estimation. Int. J. Hydrog. Energy 2018, 43, 11559–11567. [Google Scholar] [CrossRef]
- Zhao, D.; Li, F.; Ma, R.; Zhao, G.; Huangfu, Y. An Unknown Input Nonlinear Observer Based Fractional Order PID Control of Fuel Cell Air Supply System. IEEE Trans. Ind. Appl. 2020, 56, 5523–5532. [Google Scholar] [CrossRef]
- Grujicic, M.; Chittajallu, K.M.; Law, E.H.; Pukrushpan, J.T. Model-based control strategies in the dynamic interaction of air supply and fuel cell. Proc. Inst. Mech. Eng. Part A J. Power Energy 2004, 218, 487–499. [Google Scholar] [CrossRef]
- Kunusch, C.; Puleston, P.F.; Mayosky, M.A.; Fridman, L. Experimental results applying second order sliding mode control to a PEM fuel cell based system. Control Eng. Pract. 2013, 21, 719–726. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Wang, D.; Chai, T. Observer-Based Composite Adaptive Type-2 Fuzzy Control for PEMFC Air Supply Systems. IEEE Trans. Fuzzy Syst. 2022, 30, 515–529. [Google Scholar] [CrossRef]
- Talj, R.J.; Hissel, D.; Ortega, R.; Becherif, M.; Hilairet, M. Experimental Validation of a PEM Fuel-Cell Reduced-Order Model and a Moto-Compressor Higher Order Sliding-Mode Control. IEEE Trans. Ind. Electron. 2010, 57, 1906–1913. [Google Scholar] [CrossRef]
- Chen, J.; Liu, Z.; Wang, F.; Ouyang, Q.; Su, H. Optimal Oxygen Excess Ratio Control for PEM Fuel Cells. IEEE Trans. Control Syst. Technol. 2018, 26, 1711–1721. [Google Scholar] [CrossRef]
- Liu, H.; Yin, H.; Ding, T.; Huang, X.; Gao, J. Cathode Pressure Control of Air Supply System for PEMFC. IFAC-PapersOnLine 2021, 54, 247–252. [Google Scholar] [CrossRef]
- Wang, K.; Chen, J.; Wang, Y.-X. Air Feeding Adaptive Backstepping Sliding Mode Control for Automotive Fuel Cell System. In 2021 China Automation Congress (CAC); IEEE: New York, NY, USA, 2021. [Google Scholar]
- Li, P.; Chen, J.; Cai, T.; Zhang, B. Adaptive Control of Air Delivery System for PEM Fuel Cell Using Backstepping. In Proceedings of the 2011 8th Asian Control Conference (ASCC), Kaohsiung, Taiwan, 15–18 May 2011. [Google Scholar]
- Fei, J.; Liu, L.; Chen, Y. Finite-time Disturbance Observer of Active Power Filter with Dynamic Terminal Sliding Mode Controller. IEEE J. Emerg. Sel. Top. Power Electron. 2022, 2022, 1. [Google Scholar] [CrossRef]
- Yin, Q.; Mu, Q.; Bian, Y.; Ji, W.; Wang, L. Command filtered dual backstepping variable structure robust switching control of uncertain nonlinear system. Nonlinear Dyn. 2022, 111, 3953–3967. [Google Scholar] [CrossRef]
- Wang, B.; Iwasaki, M.; Yu, J. Finite-Time Command Filtered Backstepping Control for Dual-Motor Servo Systems With LuGre Friction. IEEE Trans. Ind. Inform. 2022, 2022, 341. [Google Scholar] [CrossRef]
- Yu, J.; Shi, P.; Zhao, L. Finite-time command filtered backstepping control for a class of nonlinear systems. Automatica 2018, 92, 173–180. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, J.; Wang, J.; Xing, X. Adaptive neural novel prescribed performance control for non-affine pure-feedback systems with input saturation. Nonlinear Dyn. 2018, 93, 1241–1259. [Google Scholar] [CrossRef]
- Du Phan, V.; Truong, H.V.A.; Ahn, K.K. Actuator failure compensation-based command filtered control of electro-hydraulic system with position constraint. ISA Trans. 2022, 2022, 23. [Google Scholar] [CrossRef]
- Kim, B.M.; Choi, Y.H.; Yoo, S.J. Adaptive Control of Proton Exchange Membrane Fuel Cell Air Supply Systems With Asymmetric Oxygen Excess Ratio Constraints. IEEE Access 2020, 8, 5537–5549. [Google Scholar] [CrossRef]
- Matraji, I.; Laghrouche, S.; Jemei, S.; Wack, M. Robust control of the PEM fuel cell air-feed system via sub-optimal second order sliding mode. Appl. Energy 2013, 104, 945–957. [Google Scholar] [CrossRef]
- Du Phan, V.; Trinh, H.-A.; Ahn, K.K. Design and evaluation of adaptive neural fuzzy-based pressure control for PEM fuel cell system. Energy Rep. 2022, 8, 12026–12037. [Google Scholar] [CrossRef]
- Farrell, J.A.; Polycarpou, M.; Sharma, M.; Dong, W. Command Filtered Backstepping. IEEE Trans. Autom. Control 2009, 54, 1391–1395. [Google Scholar] [CrossRef]
- Mishra, D.P. Sag, Swell and Interruption Detection Using Wavelet in LabVIEW. Int. J. Comput. Electr. Eng. 2013, 5, 387–391. [Google Scholar] [CrossRef]
Symbol | Descriptions | Value [Unit] |
---|---|---|
R | Universal gas constant | 8.31447 [J/(mol.K)] |
T | Operating temperature | 343 [K] |
F | Faraday constant | 96485 [C/mol] |
Tca | Temperature of cathode | 298.15 [K] |
Tst | Temperature of FC stack | 353.15 [K] |
Ma,ca | Air molar mass | 28.964 × 10−3 [kg/mol] |
MO2 | Oxygen molar mass | 32 × 10−3 [kg/mol] |
CD | Nozzle discharge coefficient | 0.0124 |
Cp | Air specific heat capacity | 1004 [J/(kg.K)] |
Vca | Volume of cathode | 0.01 [m3] |
Vsm | Volume of supply manifold | 0.02 [m3] |
Vcpr/tr | Compressor volume per turn | 5 × 10−4 [m3/tr] |
kf | Friction coefficient | 0.0153 [(N.s)/rad] |
kca,in | Cathode inlet constant | 3.629 × 10−6 [kg/(Pa.s)] |
kt | Motor constant | 0.0513 [N.m/rad] |
patm | Atmospheric pressure | 1.01325 [atm] |
AT | Nozzle opening area | 0.005 [m2] |
γ | Air ratio of specific heats | 1.4 |
ηcp | Compressor efficiency | 0.8 |
ηcm | Motor mechanical efficiency | 0.98 |
ηv−c | Volumetric efficiency | 0.98 |
Jcp | Compressor and motor inertia | 671.9 × 10−5 [kg.m2] |
ρa | Air density | 1.23 [kg/m3] |
n | Number of cells | 20 |
Components | Descriptions | Specification |
---|---|---|
PEMFC | Type | FCS-C100 |
Rated power | 100 [W] | |
Humidification | Self-humidified | |
Max. stack temperature | 65 [°C] | |
Reactants | Hydrogen and Air | |
DC motor | Type | Maxon DCX26L-GB-KL |
Rated rotation speed | 5060 [rpm] | |
Gear ratio | 35:1 | |
Absolute encoder | 4096 [pulses/rev] | |
Bridge motor drivers | Type | H-Bridges MD04 |
Analog input | 0-10 [V] | |
H-Bridge/Motor voltage | 60/24 [V] | |
Gas pressure sensor | Model | SDE-D10-G2-W18-L-PU-M8 |
Rated output | 1.5 [bar/V] | |
Pressure range | 0 to 10 [bar] | |
Electronic load | Model | Chroma 63600 |
Voltage range | Up to 600 [V] | |
Max. power | 100 [W] | |
Power Supply | Model | PWS-3010D |
Output voltage | 0 to 30 [V] | |
Output current | 0 to 10 [A] | |
Data acquisition Card | Type | NI PCI-6014 |
Resolution | 16AI/2AO: 16-bits |
Controller | PID | CFCPC | Proposed |
---|---|---|---|
0.1642 | 0.0821 | 0.0585 | |
0.8922 | 0.5306 | 0.3526 | |
0.1640 | 0.0819 | 0.0584 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phan, V.D.; Trinh, H.-A.; Ahn, K.K. Finite-Time Command Filtered Control for Oxygen-Excess Ratio of Proton Exchange Membrane Fuel Cell Systems with Prescribed Performance. Mathematics 2023, 11, 914. https://doi.org/10.3390/math11040914
Phan VD, Trinh H-A, Ahn KK. Finite-Time Command Filtered Control for Oxygen-Excess Ratio of Proton Exchange Membrane Fuel Cell Systems with Prescribed Performance. Mathematics. 2023; 11(4):914. https://doi.org/10.3390/math11040914
Chicago/Turabian StylePhan, Van Du, Hoai-An Trinh, and Kyoung Kwan Ahn. 2023. "Finite-Time Command Filtered Control for Oxygen-Excess Ratio of Proton Exchange Membrane Fuel Cell Systems with Prescribed Performance" Mathematics 11, no. 4: 914. https://doi.org/10.3390/math11040914
APA StylePhan, V. D., Trinh, H.-A., & Ahn, K. K. (2023). Finite-Time Command Filtered Control for Oxygen-Excess Ratio of Proton Exchange Membrane Fuel Cell Systems with Prescribed Performance. Mathematics, 11(4), 914. https://doi.org/10.3390/math11040914