On the Approximation by Bivariate Szász–Jakimovski–Leviatan-Type Operators of Unbounded Sequences of Positive Numbers
Abstract
:1. Introduction and Preliminaries
2. Construction of New Operators and Estimation of Moments
3. Weighted Approximation and Degree of Convergence
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bernstein, S.N. Démonstration du théorème de Weierstrass fondée sur le calcul des probabilités. Comm. Soc. Math. Kharkow 1913, 13, 1–2. [Google Scholar]
- Szász, O. Generalization of S. Bernstein’s polynomials to the infinite interval. J. Res. Natl. Bur. Stand. 1950, 45, 239–245. [Google Scholar] [CrossRef]
- Jakimovski, A.; Leviatan, D. Generalized Szász operators for the approximation in the infinite interval. Mathematica 1969, 11, 97–103. [Google Scholar]
- Sucu, S. Dunkl analogue of Szász operators. Appl. Math. Comput. 2014, 244, 42–48. [Google Scholar] [CrossRef]
- Rosenblum, M. Generalized Hermite polynomials and the Bose-like oscillator calculus. Oper. Theory Adv. Appl. 1994, 73, 369–396. [Google Scholar]
- Nasiruzzaman, M.; Aljohani, A.F. Approximation by Szász-Jakimovski-Leviatan type operators via aid of Appell polynomials. J. Funct. Spaces 2020, 2020, 9657489. [Google Scholar] [CrossRef]
- Kajla, A.; Mohiuddine, S.A.; Alotaibi, A. Blending-type approximation by Lupaş-Durrmeyer-type operators involving Pólya distribution. Math. Meth. Appl. Sci. 2021, 44, 9407–9418. [Google Scholar] [CrossRef]
- Alotaibi, A.; Mursaleen, M. Approximation of Jakimovski-Leviatan-Beta type integral operators via q-calculus. AIMS Math. 2020, 5, 3019–3034. [Google Scholar] [CrossRef]
- Milovanovic, G.V.; Mursaleen, M.; Nasiruzzaman, M. Modified Stancu type Dunkl generalization of Szász-Kantorovich operators. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 2018, 112, 135–151. [Google Scholar] [CrossRef] [Green Version]
- Mursaleen, M.; Nasiruzzaman, M.; Alotaibi, A. On Modified Dunkl generalization of Szasz operators via q-calculus. J. Inequal. Appl. 2017, 2017, 38. [Google Scholar] [CrossRef] [Green Version]
- Mursaleen, M.; Nasiruzzaman, M.; Al-Abied, A. Dunkl generalization of q-parametric Szasz–Mirakjan operators. Int. J. Anal. Appl. 2017, 13, 206–215. [Google Scholar]
- Mohiuddine, S.A.; Acar, T.; Alotaibi, A. Construction of a new family of Bernstein-Kantorovich operators. Math. Meth. Appl. Sci. 2017, 40, 7749–7759. [Google Scholar] [CrossRef]
- Mohiuddine, S.A.; Ahmad, N.; Özger, F.; Alotaibi, A.; Hazarika, B. Approximation by the parametric generalization of Baskakov-Kantorovich operators linking with Stancu operators. Iran. J. Sci. Technol. Trans. Sci. 2021, 45, 593–605. [Google Scholar] [CrossRef]
- Mohiuddine, S.A.; Özger, F. Approximation of functions by Stancu variant of Bernstein-Kantorovich operators based on shape parameter α. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 2020, 114, 70. [Google Scholar] [CrossRef]
- Mohiuddine, S.A.; Kajla, A.; Alotaibi, A. Bézier-summation-integral-type operators that include Pólya-Eggenberger distribution. Mathematics 2022, 10, 2222. [Google Scholar] [CrossRef]
- Mohiuddine, S.A.; Singh, K.K.; Alotaibi, A. On the order of approximation by modified summation-integral-type operators based on two parameters. Demonstr. Math. 2023, 56, 20220182. [Google Scholar] [CrossRef]
- Nasiruzzaman, M. Approximation properties by Szász operators to bivariate functions via Dunkl analogue. Iran. J. Sci. Technol. Trans. Sci. 2021, 45, 259–269. [Google Scholar] [CrossRef]
- Nasiruzzaman, M.; Aljohani, A.F. Approximation by parametric extension of Szász-Mirakjan-Kantorovich operators involving the Appell polynomials. J. Funct. Spaces 2020, 2020, 8863664. [Google Scholar] [CrossRef]
- Nasiruzzaman, M.; Mursaleen, M. Approximation by Jakimovski-Leviatan-Beta operators in weighted space. Adv. Differ. Equ. 2020, 2020, 393. [Google Scholar] [CrossRef]
- Nasiruzzaman, M.; Rao, N.; Kumar, M.; Kumar, R. Approximation on bivariate parametric-extension of Baskakov-Durrmeyer-operators. Filomat 2021, 35, 2783–2800. [Google Scholar] [CrossRef]
- Nasiruzzaman, M.; Ansari, K.J.; Mursaleen, M. On the parametric approximation results of phillips operators Involving the q-Appell polynomials. Iran. J. Sci. Technol. Trans. Sci. 2022, 46, 251–263. [Google Scholar] [CrossRef]
- Rao, N.; Nasiruzzaman, M.; Heshamuddin, M.; Shadab, M. Approximation properties by modified Baskakov-Durrmeyer operators based on shape parameter α. Iran. J. Sci. Technol. Trans. Sci. 2021, 45, 1457–1465. [Google Scholar] [CrossRef]
- Özger, F.; Srivastava, H.M.; Mohiuddine, S.A. Approximation of functions by a new class of generalized Bernstein-Schurer operators. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 2020, 114, 173. [Google Scholar] [CrossRef]
- Abdullayeva, A.E.; Mammadova, A.N. On order of approximation function by generalized Szász operators and Bernstein-Chlodowsky polynomials. Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb 2013, 38, 3–8. [Google Scholar]
- Agrawal, P.N.; İspir, N. Degree of approximation for bivariate Chlodowsky-Szász-Charlier type operators. Results Math. 2016, 69, 369–385. [Google Scholar] [CrossRef]
- Ismail, M.E.H. Classical and Quantum Orthogonal Polynomials in One Variable; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Piriyeva, A.E. On order of approximation of functions by generalized Bernstein-Chlodowsky polynomials. Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb. 2004, 21, 157–164. [Google Scholar]
- Varma, S.; Taşdelen, F. Szász type operators involving Charlier polynomials. Math. Comput. Modell. 2012, 56, 118–122. [Google Scholar] [CrossRef]
- İspir, N.; Atakut, Ç. Approximation by modified Szász-Mirakjan operators on weighted spaces. Proc. Indian Acad. Sci. Math. Sci. 2002, 112, 571–578. [Google Scholar] [CrossRef]
- Gadẑiev, A.D.; Hacisalihoglu, H. Convergence of the Sequences of Linear Positive Operators; Ankara University: Yenimahalle, Turkey, 1995. [Google Scholar]
- Gadẑiev, A.D. Positive linear operators in weighted spaces of functions of several variables. Izv. Akad. Nauk Azerbaidzhan. SSR Ser. Fiz.-Tekhn. Mat. Nauk 1980, 4, 32–37. [Google Scholar]
- Kadak, U.; Mohiuddine, S.A. Generalized statistically almost convergence based on the difference operator which includes the (p,q)-gamma function and related approximation theorems. Results Math. 2018, 73, 9. [