On Some Expansion Formulas for Products of Jacobi’s Theta Functions
Abstract
1. Introduction
2. Main Results
3. Powers of
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andrews, G.E.; Berndt, B.C. Ramanujan’s Lost Notebooks, Part I; Springer Science+Business Media, Inc.: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Berndt, B.C. Ramanujan’s Notebooks, Part III; Springer: New York, NY, USA, 1991. [Google Scholar]
- Jacobi, C.G.J. Fundamenta Nova Theoriae Functionum Ellipticarum; Borntrager: Stuttgart, Germany, 1829. [Google Scholar]
- Whittaker, E.T.; Watson, G.N. A Course of Modern Analysis, 4th ed.; Cambridge University Press: Cambridge, UK, 1966. [Google Scholar]
- Schiefermayr, K. Some new properties of Jacobi’s theta functions. J. Comput. Appl. Math. 2005, 178, 419–424. [Google Scholar] [CrossRef][Green Version]
- Liu, Z.-G. Addition formulas for Jacobi theta functions, Dedekind’s eta function, and Ramanujan’s congruences. Pacific J. Math. 2009, 240, 135–150. [Google Scholar] [CrossRef]
- Tsumura, H. Double series identities arising from Jacobi’s identity of the theta function. Results Math. 2018, 73, 10–12. [Google Scholar] [CrossRef]
- Tsumura, H. On series identities arising from Jacobi’s identity of the theta function. Int. J. Number Theory 2018, 14, 1317–1327. [Google Scholar] [CrossRef]
- Schneider, R. Jacobi’s triple product, mock theta functions, unimodal sequences and the q-bracket. Int. J. Number Theory 2018, 14, 1961–1981. [Google Scholar] [CrossRef]
- Singh, S.P.; Yadav, R.K.; Yadav, V. Certain properties of Jacobi’s theta functions. South East Asian J. Math. Math. Sci. 2021, 17, 119–130. [Google Scholar]
- Berndt, B.C.; Chan, S.H.; Liu, Z.-G.; Yesilyurt, H. A new identity for with an application to Ramanujan’s partion congruence modulo 11. Quart. J. Math. 2004, 55, 13–30. [Google Scholar] [CrossRef]
- Chan, H.H.; Cooper, S.; Toh, P.C. Ramanujan’s Eisenstein series and powers of Dedekind’s eta-function. J. Lond. Math. Soc. 2007, 75, 225–242. [Google Scholar] [CrossRef]
- Chu, W. Theta function identites and Ramanujan’s congruence on partion function. Quart. J. Math. 2005, 56, 491–506. [Google Scholar] [CrossRef]
- He, B. A theta function identity and its applications. Ramanujan J. 2015, 38, 423–433. [Google Scholar] [CrossRef]
- Ma, H.-N.; He, B. On a theta function identity. Integral Transform. Spec. Funct. 2016, 27, 365–370. [Google Scholar] [CrossRef]
- Liu, Z.-G. A theta function identity and its implications. Trans. Am. Math. Soc. 2005, 357, 825–835. [Google Scholar] [CrossRef]
- Liu, Z.-G. A three-term theta function identity and its applications. Adv. Math. 2005, 195, 1–23. [Google Scholar] [CrossRef]
- Zhai, H.-C. Additive formulae of theta functions with applications in modular equations of degree three and five. Integral Transform. Spec. Funct. 2009, 20, 769–773. [Google Scholar] [CrossRef]
- Shen, L.-C. On the products of three theta functions. Ramanujan J. 1999, 3, 343–357. [Google Scholar] [CrossRef]
- Winquist, L. An elementary proof of p(11m + 6) ≡ 0(mod11). J. Comb. Theory 1969, 6, 56–59. [Google Scholar] [CrossRef][Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhai, H.-C.; Cao, J.; Arjika, S. On Some Expansion Formulas for Products of Jacobi’s Theta Functions. Mathematics 2023, 11, 588. https://doi.org/10.3390/math11030588
Zhai H-C, Cao J, Arjika S. On Some Expansion Formulas for Products of Jacobi’s Theta Functions. Mathematics. 2023; 11(3):588. https://doi.org/10.3390/math11030588
Chicago/Turabian StyleZhai, Hong-Cun, Jian Cao, and Sama Arjika. 2023. "On Some Expansion Formulas for Products of Jacobi’s Theta Functions" Mathematics 11, no. 3: 588. https://doi.org/10.3390/math11030588
APA StyleZhai, H.-C., Cao, J., & Arjika, S. (2023). On Some Expansion Formulas for Products of Jacobi’s Theta Functions. Mathematics, 11(3), 588. https://doi.org/10.3390/math11030588