On Some Formulas for the Lauricella Function
Abstract
1. Introduction and Preliminaries
2. The Limit Formulas
3. Some Decomposition Formulas Associated with the Lauricella Function
4. Integral Representations
5. Differentiation Formulas
6. Finite Sums
7. Infinite Sums
8. Recurrence-Type Relations
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bers, L. Mathematical Aspects of Subsonic and Transonic Gas Dynamics; Wiley: New York, NY, USA, 1958. [Google Scholar]
- Niukkanen, A.W. Generalised hypergeometric series NF(x1,...,xN) arising in physical and quantum chemical applications. J. Phys. A Math. Gen. 1983, 16, 1813–1825. [Google Scholar] [CrossRef]
- Lauricella, G. On multivariable hypergeometric functions. Rend. Circ. Mat. Palermo 1893, 7, 111–158. [Google Scholar] [CrossRef]
- Erdelyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Higher Transcendental Functions; McGraw-Hill: New York, NY, USA, 1953; Volume 1. [Google Scholar]
- Appell, P. On hypergeometric series of two variables, and on linear differential equations with partial derivatives. C. R. Acad. Sci. 1880, 90, 296–298. (In French) [Google Scholar]
- Burchnall, J.L.; Chaundy, T.W. Expansions of Appell’s double hypergeometric functions. Q. J. Math. 1940, 11, 249–270. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Karlsson, P.W. Multiple Gaussian Hypergeometric Series; Halsted Press (Ellis Horwood Limited): Chichester, UK; Wiley: New York, NY, USA, 1985. [Google Scholar]
- Srivastava, H.M.; Hasanov, A.; Choi, J. Double-layer potentials for a generalized bi-axially symmetric Helmholtz equation. Sohag J. Math. 2015, 2, 316–332. [Google Scholar]
- Appell, P.; Kampé de Fériet, J. Hypergeometric and Hyperspheric Functions: Hermite Polynomials; Gauthier-Villars: Paris, France, 1926. (In French) [Google Scholar]
- Ergashev, T.G. Generalized Holmgren Problem for an Elliptic Equation with Several Singular Coefficients. Differ. Equ. 2020, 56, 842–856. [Google Scholar] [CrossRef]
- Brychkov, Y.; Saad, N. Some formulas for the Appell function F2(a,b,b′;c,c′;w,z). Integral Transform. Spec. Funct. 2014, 25, 111–123. [Google Scholar] [CrossRef]
- Hasanov, A.; Berdyshev, A.S.; Ryskan, A. Fundamental solutions for a class of four-dimensional degenerate elliptic equation. Complex Var. Elliptic Equ. 2020, 65, 632–647. [Google Scholar] [CrossRef]
- Baishemirov, Z.; Berdyshev, A.; Ryskan, A.A. Solution of a Boundary Value Problem with Mixed Conditions for a Four-Dimensional Degenerate Elliptic Equation. Mathematics 2022, 10, 1094. [Google Scholar] [CrossRef]
- Burchnall, J.L.; Chaundy, T.W. Expansions of Appell’s double hypergeometric functions (II). Q. J. Math. 1941, 12, 112–128. [Google Scholar] [CrossRef]
- Hasanov, A.; Srivastava, H.M. Decomposition formulas associated with the Lauricella function FA(r) and other multiple hypergeometric functions. Appl. Math. Lett. 2006, 19, 113–121. [Google Scholar] [CrossRef][Green Version]
- Hasanov, A.; Srivastava, H.M. Decomposition Formulas Associated with the Lauricella Multivariable Hypergeometric Functions. Comput. Math. Appl. 2007, 53, 1119–1128. [Google Scholar] [CrossRef][Green Version]
- Hasanov, A.; Ergashev, T.G. New decomposition formulas associated with the Lauricella multivariable hypergeometric functions. Montes Taurus J. Pure Appl. Math. 2021, 3, 317–326. [Google Scholar]
- Prudnikov, A.P.; Brychkov, Y.A.; Marichev, O.I. Integrals and Series; Gordon and Breach Science Publishers: New York, NY, USA, 1989; Volume 3. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryskan, A.; Ergashev, T. On Some Formulas for the Lauricella Function. Mathematics 2023, 11, 4978. https://doi.org/10.3390/math11244978
Ryskan A, Ergashev T. On Some Formulas for the Lauricella Function. Mathematics. 2023; 11(24):4978. https://doi.org/10.3390/math11244978
Chicago/Turabian StyleRyskan, Ainur, and Tuhtasin Ergashev. 2023. "On Some Formulas for the Lauricella Function" Mathematics 11, no. 24: 4978. https://doi.org/10.3390/math11244978
APA StyleRyskan, A., & Ergashev, T. (2023). On Some Formulas for the Lauricella Function. Mathematics, 11(24), 4978. https://doi.org/10.3390/math11244978