Assisted Postselective Quantum Transformations and an Improved Photon Number Splitting Attack Strategy
Abstract
:1. Introduction
2. Enlarging Success Probability with Assistance
2.1. Examples for Assisted Transformations
2.2. Improvement with Linearly Independent Assistance
2.3. Requesting for Assistance
3. Improved Photon Number Splitting Attack in Quantum Key Distribution
So, now Eve has to consider two different filters and that make the states in set a and set b orthogonal, respectively. If she wants to receive all the information about the bit sent by Alice, she has to block all the pulses with less than three photons. When the pulse contains three photons, she applies to the first one, to the second one, and only when both of them are conclusive, she forwards the third photon to Bob.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
QKD | Quantum key distribution |
PNS | Photon number splitting |
USD | Unambiguous state discrimination |
SARG04 | Quantum key distribution protocol by Scarani, Acín, Ribordy, Gisin, 2004 |
References
- Wootters, W.K.; Zurek, W.H. A single quantum cannot be cloned. Nature 1982, 299, 802–803. [Google Scholar] [CrossRef]
- Gisin, N.; Ribordy, G.; Tittel, W.; Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 2002, 74, 145–195. [Google Scholar] [CrossRef]
- Pirandola, S.; Andersen, U.L.; Banchi, L.; Berta, M.; Bunandar, D.; Colbeck, R.; Englund, D.; Gehring, T.; Lupo, C.; Ottaviani, C.; et al. Advances in quantum cryptography. Adv. Opt. Photonics 2020, 12, 1012–1236. [Google Scholar] [CrossRef]
- Chefles, A.; Jozsa, R.; Winter, A. On the existence of physical transformations between sets of quantum states. Int. J. Quant. Inf. 2004, 2, 11–21. [Google Scholar] [CrossRef]
- Ivanovic, I. How to differentiate between non-orthogonal states. Phys. Lett. A 1987, 123, 257–259. [Google Scholar] [CrossRef]
- Dieks, D. Overlap and distinguishability of quantum states. Phys. Lett. A 1988, 126, 303–306. [Google Scholar] [CrossRef]
- Peres, A. How to differentiate between non-orthogonal states. Phys. Lett. A 1988, 128, 19. [Google Scholar] [CrossRef]
- Kronberg, D.A. Success probability for postselective transformations of pure quantum states. Phys. Rev. A 2022, 106, 042447. [Google Scholar] [CrossRef]
- Chefles, A. Unambiguous discrimination between linearly dependent states with multiple copies. Phys. Rev. A 2001, 64, 062305. [Google Scholar] [CrossRef]
- Kronberg, D.A.; Nikolaeva, A.S.; Kurochkin, Y.V.; Fedorov, A.K. Quantum soft filtering for the improved security analysis of the coherent one-way quantum-key-distribution protocol. Phys. Rev. A 2020, 101, 032334. [Google Scholar] [CrossRef]
- Kronberg, D.A. Increasing the distinguishability of quantum states with an arbitrary success probability. Proc. Steklov Inst. Math. 2021, 313, 113–119. [Google Scholar] [CrossRef]
- Davies, E.B.; Lewis, J.T. An operational approach to quantum probability. Commun. Math. Phys. 1970, 17, 239–260. [Google Scholar] [CrossRef]
- Datta, N. Min-and max-relative entropies and a new entanglement monotone. IEEE Trans. Inf. Theory 2009, 55, 2816–2826. [Google Scholar] [CrossRef]
- Huttner, B.; Imoto, N.; Gisin, N.; Mor, T. Quantum cryptography with coherent states. Phys. Rev. A 1995, 51, 1863. [Google Scholar] [CrossRef] [PubMed]
- Brassard, G.; Lütkenhaus, N.; Mor, T.; Sanders, B.C. Limitations on practical quantum cryptography. Phys. Rev. Lett. 2000, 85, 1330. [Google Scholar] [CrossRef] [PubMed]
- Acin, A.; Gisin, N.; Scarani, V. Coherent-pulse implementations of quantum cryptography protocols resistant to photon-number-splitting attacks. Phys. Rev. A 2004, 69, 012309. [Google Scholar] [CrossRef]
- Scarani, V.; Acin, A.; Ribordy, G.; Gisin, N. Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations. Phys. Rev. Lett. 2004, 92, 057901. [Google Scholar] [CrossRef] [PubMed]
- Bennett, C.; Brassard, G. Quantum cryptography: Public key distribution and coin tossing. Theor. Comput. Sci. 1984, 560, 175–179. [Google Scholar] [CrossRef]
- Holevo, A.S. Quantum coding theorems. Russ. Math. Surv. 1998, 53, 1295–1331. [Google Scholar] [CrossRef]
- Sasaki, M.; Kato, K.; Izutsu, M.; Hirota, O. Quantum channels showing superadditivity in classical capacity. Phys. Rev. A 1998, 58, 146–158. [Google Scholar] [CrossRef]
- Hastings, M.B. Superadditivity of communication capacity using entangled inputs. Nat. Phys. 2009, 5, 255–257. [Google Scholar] [CrossRef]
- Kronberg, D.A.; Molotkov, S.N. Robustness of quantum cryptography: SARG04 key-distribution protocol. Laser Phys. 2009, 19, 884–893. [Google Scholar] [CrossRef]
- Lo, H.K.; Ma, X.; Chen, K. Decoy state quantum key distribution. Phys. Rev. Lett. 2005, 94, 230504. [Google Scholar] [CrossRef] [PubMed]
- Kenbaev, N.R.; Kronberg, D.A. Quantum postselective measurements: Sufficient condition for overcoming the Holevo bound and the role of max-relative entropy. Phys. Rev. A 2022, 105, 012609. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klevtsov, T.; Kronberg, D. Assisted Postselective Quantum Transformations and an Improved Photon Number Splitting Attack Strategy. Mathematics 2023, 11, 4973. https://doi.org/10.3390/math11244973
Klevtsov T, Kronberg D. Assisted Postselective Quantum Transformations and an Improved Photon Number Splitting Attack Strategy. Mathematics. 2023; 11(24):4973. https://doi.org/10.3390/math11244973
Chicago/Turabian StyleKlevtsov, Timur, and Dmitry Kronberg. 2023. "Assisted Postselective Quantum Transformations and an Improved Photon Number Splitting Attack Strategy" Mathematics 11, no. 24: 4973. https://doi.org/10.3390/math11244973
APA StyleKlevtsov, T., & Kronberg, D. (2023). Assisted Postselective Quantum Transformations and an Improved Photon Number Splitting Attack Strategy. Mathematics, 11(24), 4973. https://doi.org/10.3390/math11244973