Memory Tensor for Non-Markovian Dynamics with Random Hamiltonian
Abstract
:1. Introduction
2. Process Tensor and Regression Formulae
2.1. Regression Formulae for Closed Dynamics
2.2. Regression Formulae for Markovian Dynamics
3. Dynamics with Random Hamiltonian
3.1. Gaussian Case
3.2. Poisson Case
4. Asymptotic Expansion of Dynamics with Random Free Hamiltonian
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CP | completely positive |
GKSL | Gorini–Kossakowski–Sudarshan–Lindblad |
References
- Breuer, H.P.; Petruccione, F. The Theory of Open Quantum Systems; Oxford University Press: New York, NY, USA, 2002. [Google Scholar]
- Shibata, F.; Takahashi, Y.; Hashitsume, N. A generalized stochastic liouville equation. Non-Markovian versus memoryless master equations. J. Stat. Phys. 1977, 17, 171–187. [Google Scholar] [CrossRef]
- Breuer, H.P.; Kappler, B.; Petruccione, F. Stochastic wave-function method for non-Markovian quantum master equations. Phys. Rev. A 1999, 59, 1633. [Google Scholar] [CrossRef]
- Breuer, H.P.; Kappler, B.; Petruccione, F. The time-convolutionless projection operator technique in the quantum theory of dissipation and decoherence. Ann. Phys. 2001, 291, 36–70. [Google Scholar] [CrossRef]
- Garraway, B.M. Decay of an atom coupled strongly to a reservoir. Phys. Rev. A 1997, 55, 4636. [Google Scholar] [CrossRef]
- Garraway, B. Nonperturbative decay of an atomic system in a cavity. Phys. Rev. A 1997, 55, 2290. [Google Scholar] [CrossRef]
- Woods, M.; Groux, R.; Chin, A.; Huelga, S.F.; Plenio, M.B. Mappings of open quantum systems onto chain representations and Markovian embeddings. J. Math. Phys. 2014, 55, 032101. [Google Scholar] [CrossRef]
- Tamascelli, D.; Smirne, A.; Huelga, S.F.; Plenio, M.B. Nonperturbative treatment of non-Markovian dynamics of open quantum systems. Phys. Rev. Lett. 2018, 120, 030402. [Google Scholar] [CrossRef]
- Luchnikov, I.; Vintskevich, S.; Ouerdane, H.; Filippov, S. Simulation complexity of open quantum dynamics: Connection with tensor networks. Phys. Rev. Lett. 2019, 122, 160401. [Google Scholar] [CrossRef]
- Teretenkov, A.E. Pseudomode approach and vibronic non-Markovian phenomena in light-harvesting complexes. Proc. Steklov Inst. Math. 2019, 306, 242–256. [Google Scholar] [CrossRef]
- Pleasance, G.; Garraway, B.M.; Petruccione, F. Generalized theory of pseudomodes for exact descriptions of non-Markovian quantum processes. Phys. Rev. Res. 2020, 2, 043058. [Google Scholar] [CrossRef]
- Nüßeler, A.; Tamascelli, D.; Smirne, A.; Lim, J.; Huelga, S.F.; Plenio, M.B. Fingerprint and universal Markovian closure of structured bosonic environments. Phys. Rev. Lett. 2022, 129, 140604. [Google Scholar] [CrossRef]
- Könenberg, M.; Merkli, M. Completely positive dynamical semigroups and quantum resonance theory. Lett. Math. Phys. 2017, 107, 1215–1233. [Google Scholar] [CrossRef]
- Teretenkov, A.E. Non-perturbative effects in corrections to quantum master equations arising in Bogolubov–van Hove limit. J. Phys. A Math. Theor. 2021, 54, 265302. [Google Scholar] [CrossRef]
- Nestmann, K.; Bruch, V.; Wegewijs, M.R. How quantum evolution with memory is generated in a time-local way. Phys. Rev. X 2021, 11, 021041. [Google Scholar] [CrossRef]
- Teretenkov, A. Long-time Markovianity of multi-level systems in the rotating wave approximation. Lobachevskii J. Math. 2021, 42, 2455–2465. [Google Scholar] [CrossRef]
- Trushechkin, A.S. Derivation of the Redfield quantum master equation and corrections to it by the Bogoliubov method. Proc. Steklov Inst. Math. 2021, 313, 246–257. [Google Scholar] [CrossRef]
- Li, L.; Hall, M.J.; Wiseman, H.M. Concepts of quantum non-Markovianity: A hierarchy. Phys. Rep. 2018, 759, 1–51. [Google Scholar] [CrossRef]
- Breuer, H.P.; Laine, E.M.; Piilo, J. Measure for the degree of non-Markovian behavior of quantum processes in open systems. Phys. Rev. Lett. 2009, 103, 210401. [Google Scholar] [CrossRef]
- Rivas, Á.; Huelga, S.F.; Plenio, M.B. Quantum non-Markovianity: Characterization, quantification and detection. Rep. Prog. Phys. 2014, 77, 094001. [Google Scholar] [CrossRef]
- Bae, J.; Chruściński, D. Operational characterization of divisibility of dynamical maps. Phys. Rev. Lett. 2016, 117, 050403. [Google Scholar] [CrossRef]
- Feller, W. Non-Markovian processes with the semigroup property. Ann. Math. Stat. 1959, 30, 1252–1253. [Google Scholar] [CrossRef]
- Milz, S.; Kim, M.; Pollock, F.A.; Modi, K. Completely positive divisibility does not mean Markovianity. Phys. Rev. Lett. 2019, 123, 040401. [Google Scholar] [CrossRef]
- Li, C.F.; Guo, G.C.; Piilo, J. Non-Markovian quantum dynamics: What does it mean? Europhys. Lett. 2019, 127, 50001. [Google Scholar] [CrossRef]
- Li, C.F.; Guo, G.C.; Piilo, J. Non-Markovian quantum dynamics: What is it good for? Europhys. Lett. 2020, 128, 30001. [Google Scholar] [CrossRef]
- Chruściński, D. Introduction to non-Markovian evolution of n-level quantum systems. In Open Quantum Systems: A Mathematical Perspective; Birkhäuser: Cham, Switizerland, 2019; pp. 55–76. [Google Scholar]
- Basharov, A.; Trubilko, A. Cooperative Emission of Radiation as a Subordinated Random Process. J. Exp. Theor. Phys. 2021, 133, 143–153. [Google Scholar] [CrossRef]
- Berk, G.D.; Garner, A.J.; Yadin, B.; Modi, K.; Pollock, F.A. Resource theories of multi-time processes: A window into quantum non-Markovianity. Quantum 2021, 5, 435. [Google Scholar] [CrossRef]
- Burgarth, D.; Facchi, P.; Lonigro, D.; Modi, K. Quantum non-Markovianity elusive to interventions. Phys. Rev. A 2021, 104, L050404. [Google Scholar] [CrossRef]
- Smirne, A.; Tamascelli, D.; Lim, J.; Plenio, M.B.; Huelga, S.F. Non-perturbative treatment of open-system multi-time expectation values in Gaussian bosonic environments. Open Syst. Inf. Dyn. 2022, 29, 2250019. [Google Scholar] [CrossRef]
- Lonigro, D.; Chruściński, D. Quantum regression in dephasing phenomena. J. Phys. A Math. Theor. 2022, 55, 225308. [Google Scholar] [CrossRef]
- Chruściński, D.; Hesabi, S.; Lonigro, D. On Markovianity and classicality in multilevel spin–boson models. Sci. Rep. 2023, 13, 1518. [Google Scholar] [CrossRef]
- Chruściński, D.; Wudarski, F.A. Non-Markovian random unitary qubit dynamics. Phys. Lett. A 2013, 377, 1425–1429. [Google Scholar] [CrossRef]
- Chruściński, D.; Wudarski, F.A. Non-Markovianity degree for random unitary evolution. Phys. Rev. A 2015, 91, 012104. [Google Scholar] [CrossRef]
- Megier, N.; Chruściński, D.; Piilo, J.; Strunz, W.T. Eternal non-Markovianity: From random unitary to Markov chain realisations. Sci. Rep. 2017, 7, 6379. [Google Scholar] [CrossRef]
- Teretenkov, A.E. An Example of Explicit Generators of Local and Nonlocal Quantum Master Equations. Proc. Steklov Inst. Math. 2021, 313, 236–245. [Google Scholar] [CrossRef]
- Mehta, M.L. Random Matrices; Elsevier: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Gough, J.; Orlov, Y.N.; Sakbaev, V.Z.; Smolyanov, O.G. Random quantization of Hamiltonian systems. In Doklady Mathematics; Springer: Berlin/Heidelberg, Germany, 2021; Volume 103, pp. 122–126. [Google Scholar]
- Gough, J.; Orlov, Y.N.; Sakbaev, V.Z.; Smolyanov, O.G. Markov approximations of the evolution of quantum systems. In Doklady Mathematics; Springer: Berlin/Heidelberg, Germany, 2022; Volume 105, pp. 92–96. [Google Scholar]
- Milz, S.; Modi, K. Quantum stochastic processes and quantum non-Markovian phenomena. PRX Quantum 2021, 2, 030201. [Google Scholar] [CrossRef]
- White, G.A.L.; Hill, C.D.; Pollock, F.A.; Hollenberg, L.C.L.; Modi, K. Demonstration of Non-Markovian Process Characterisation and Control on a Quantum Processor. Nat. Commun. 2020, 11, 6301. [Google Scholar] [CrossRef]
- Nurdin, H.I.; Gough, J. From the heisenberg to the schrödinger picture: Quantum stochastic processes and process tensors. In Proceedings of the 2021 60th IEEE Conference on Decision and Control (CDC), Austin, TX, USA, 14–17 December 2021; pp. 4164–4169. [Google Scholar]
- Holevo, A.S. Quantum Systems, Channels, Information: A Mathematical Introduction; Walter de Gruyter GmbH & Co KG: Berlin, Germany, 2012. [Google Scholar]
- Mukamel, S. Principles of Nonlinear Optical Spectroscopy; Oxford University Press: Oxford, UK, 1995. [Google Scholar]
- Cho, M. Two-Dimensional Optical Spectroscopy; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- D’Auria, V.; Fornaro, S.; Porzio, A.; Solimeno, S.; Olivares, S.; Paris, M. Full characterization of Gaussian bipartite entangled states by a single homodyne detector. Phys. Rev. Lett. 2009, 102, 020502. [Google Scholar] [CrossRef]
- Mancini, S.; Man’Ko, V.; Tombesi, P. Symplectic tomography as classical approach to quantum systems. Phys. Lett. A 1996, 213, 1–6. [Google Scholar] [CrossRef]
- Man’ko, V.; Marmo, G.; Porzio, A.; Solimeno, S.; Ventriglia, F. Homodyne estimation of quantum state purity by exploiting the covariant uncertainty relation. Phys. Scr. 2011, 83, 045001. [Google Scholar] [CrossRef]
- López-Saldívar, J.A.; Man’ko, M.A.; Man’ko, V.I. Measurement of the Temperature Using the Tomographic Representation of Thermal States for Quadratic Hamiltonians. Entropy 2021, 23, 1445. [Google Scholar] [CrossRef]
- De Nicola, S.; Fedele, R.; Jovanović, D.; Man’ko, M.A.; Man’ko, V.I. Tomographic Description of a Quantum Wave Packet in an Accelerated Frame. Entropy 2021, 23, 636. [Google Scholar] [CrossRef] [PubMed]
- Lindblad, G. Non-Markovian quantum stochastic processes and their entropy. Commun. Math. Phys. 1979, 65, 281–294. [Google Scholar] [CrossRef]
- Accardi, L.; Frigerio, A.; Lewis, J.T. Quantum stochastic processes. Publ. Res. Inst. Math. Sci. 1982, 18, 97–133. [Google Scholar] [CrossRef]
- Holevo, A.S. Statistical Structure of Quantum Theory; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2003; Volume 67. [Google Scholar]
- Blocher, P.D.; Mølmer, K. Quantum regression theorem for out-of-time-ordered correlation functions. Phys. Rev. A 2019, 99, 033816. [Google Scholar] [CrossRef]
- Srinivas, M. Collapse postulate for observables with continuous spectra. Commun. Math. Phys. 1980, 71, 131–158. [Google Scholar] [CrossRef]
- Ozawa, M. Measuring processes and repeatability hypothesis. In Probability Theory and Mathematical Statistics: Proceedings of the Fifth Japan-USSR Symposium, Kyoto, Japan, 8–14 July 1986; Springer: Berlin/Heidelberg, Germany, 2006; pp. 412–421. [Google Scholar]
- Lidar, D.A.; Chuang, I.L.; Whaley, K.B. Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 1998, 81, 2594. [Google Scholar] [CrossRef]
- Lidar, D.A. Review of Decoherence-Free Subspaces, Noiseless Subsystems, and Dynamical Decoupling. In Quantum Information and Computation for Chemistry; Wiley: Hoboken, NJ, USA, 2014; pp. 295–354. [Google Scholar]
- Agredo, J.; Fagnola, F.; Rebolledo, R. Decoherence free subspaces of a quantum Markov semigroup. J. Math. Phys. 2014, 55. [Google Scholar] [CrossRef]
- Lindblad, G. On the generators of quantum dynamical semigroups. Commun. Math. Phys. 1976, 48, 119–130. [Google Scholar] [CrossRef]
- Gorini, V.; Kossakowski, A.; Sudarshan, E.C.G. Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 1976, 17, 821–825. [Google Scholar] [CrossRef]
- Karasev, A.Y.; Teretenkov, A. Time-convolutionless master equations for composite open quantum systems. Lobachevskii J. Math. 2023, 44, 2051–2064. [Google Scholar]
- Accardi, L.; Lu, Y.G.; Volovich, I. Quantum Theory and Its Stochastic Limit; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Piccitto, G.; Russomanno, A.; Rossini, D. Entanglement Transitions in the Quantum Ising Chain: A Comparison between Different Unravelings of the Same Lindbladian. Phys. Rev. B 2022, 105, 064305. [Google Scholar] [CrossRef]
- Krantz, P.; Kjaergaard, M.; Yan, F.; Orlando, T.P.; Gustavsson, S.; Oliver, W.D. A Quantum Engineer’s Guide to Superconducting Qubits. Appl. Phys. Rev. 2019, 6, 021318. [Google Scholar] [CrossRef]
- Trubilko, A.; Basharov, A. The effective Hamiltonian method in the thermodynamics of two resonantly interacting quantum oscillators. J. Exp. Theor. Phys. 2019, 129, 339–348. [Google Scholar] [CrossRef]
- Trubilko, A.I.; Basharov, A.M. Hierarchy of times of open optical quantum systems and the role of the effective Hamiltonian in the white noise approximation. JETP Lett. 2020, 111, 532–538. [Google Scholar] [CrossRef]
- Basharov, A. The effective Hamiltonian as a necessary basis of the open quantum optical system theory. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2021; Volume 1890, p. 012001. [Google Scholar]
- Teretenkov, A. Effective Heisenberg equations for quadratic Hamiltonians. Int. J. Mod. Phys. A 2022, 37, 2243020. [Google Scholar] [CrossRef]
- Teretenkov, A.E. Quantum Markovian Dynamics after the Bath Correlation Time. Comput. Math. Math. Phys. 2023, 63, 135–145. [Google Scholar] [CrossRef]
- Spohn, H.; Lebowitz, J.L. Irreversible thermodynamics for quantum systems weakly coupled to thermal reservoirs. In Advances in Chemical Physics: For Ilya Prigogine; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1978; pp. 109–142. [Google Scholar]
- Kosloff, R. Quantum thermodynamics: A dynamical viewpoint. Entropy 2013, 15, 2100–2128. [Google Scholar] [CrossRef]
- Trushechkin, A.; Volovich, I. Perturbative treatment of inter-site couplings in the local description of open quantum networks. Europhys. Lett. 2016, 113, 30005. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teretenkov, A.E. Memory Tensor for Non-Markovian Dynamics with Random Hamiltonian. Mathematics 2023, 11, 3854. https://doi.org/10.3390/math11183854
Teretenkov AE. Memory Tensor for Non-Markovian Dynamics with Random Hamiltonian. Mathematics. 2023; 11(18):3854. https://doi.org/10.3390/math11183854
Chicago/Turabian StyleTeretenkov, Alexander Evgen’evich. 2023. "Memory Tensor for Non-Markovian Dynamics with Random Hamiltonian" Mathematics 11, no. 18: 3854. https://doi.org/10.3390/math11183854
APA StyleTeretenkov, A. E. (2023). Memory Tensor for Non-Markovian Dynamics with Random Hamiltonian. Mathematics, 11(18), 3854. https://doi.org/10.3390/math11183854