Critical Analysis of Beta Random Variable Generation Methods
Abstract
:1. Introduction
2. Preliminaries
3. Methods for Generating Beta Random Variables
3.1. Inverse Transform Method
Algorithm 1 Inverse transform method for generating |
Require: Output:
|
3.2. Composition Method
Algorithm 2 Composition method for generating r.v. [37] |
Require: Decomposition of the distribution function Output: Random sample x from the r.v.
|
3.3. Acceptance-Rejection (A–R) Method
Algorithm 3 Acceptance-rejection method for generating a r.v. |
Require: Density of a beta r.v. , constant c and density such that Output: Random sample x with distribution
|
Algorithm 4 The squeeze method |
Require: Density of a beta r.v., constant c and density such that , minorising function Output: Random sample x coming from r.v.
|
3.3.1. Jöhnk’s Algorithm
Algorithm 5 Jöhnk’s algorithm [41] |
Require: Parameters and Output: Random sample x coming from r.v.
|
3.3.2. Forsythe’s Method
Algorithm 6 Forsythe’s algorithm [42] |
Require: Functions , constants Output: Random sample x with distribution Selection of the interval
|
3.3.3. Ahrens and Dieter’s Methods
Algorithm 7 BN algorithm ([46], ) |
Require: Parameters and Output: Random sample x with distribution
|
Algorithm 8 BS algorithm ([46], ) |
Require: Parameter Output: Random sample x with distribution
|
3.3.4. Switching Algorithms
Algorithm 9 Switching algorithm [47,48] (SW2 ) |
Require: Parameters and Output: Random sample x with distribution
|
Algorithm 10 Switching algorithm [47,48] (SW1 ) |
Require: Parameters and Output: Random sample x with distribution
|
Algorithm 11 Whittaker’s algorithm [47] |
Require: Parameters and Output: Random sample x with distribution
|
3.3.5. Cheng’s Methods
Algorithm 12 BA algorithm [49] |
Require: Parameters and Output: Random sample x with distribution Initialisation
|
Algorithm 13 BB algorithm [49] () |
Require: Parameters and Output: Random sample x with distribution Initialisation
|
Algorithm 14 BC algorithm [49] () |
Require: Parameters and Output: Random sample x with distribution Initialisation
|
3.3.6. BNM Algorithm
Algorithm 15 BNM [50] |
Require: Parameters and Output: Random sample x with distribution
|
3.3.7. B2P and B4P Algorithms
Algorithm 16 B2P algorithm [50] |
Require: Parameters Output: Random sample x with distribution Initialisation
|
3.3.8. B2PE and B4PE Algorithms
Algorithm 17 B2PE algorithm (Schmeiser and Babu [21]) |
Require: Parameters Random sample x with distribution Initialisation
|
Algorithm 18 B4PE algorithm (Schmeiser and Babu [21]) |
Require: Parameters Output: Random sample x with distribution Initialization
|
3.4. Other Methods of Generation
Algorithm 19 Method for generating a beta r.v. based on a gamma r.v. [37] |
Require: Parameters y Output: R.v. Generate Generate return X |
Algorithm 20 Method based on order statistics [32] |
Require: Parameters and Output: Random sample x of a r.v. Generate a sample of size from a r.v. th order statistics return x |
4. Computational Development
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thomas, D.B.; Luk, W.; Leong, P.H.W.; Villasenor, J.D. Gaussian Random Number Generators. ACM Computing Surv. 2007, 39, 11-es. [Google Scholar] [CrossRef]
- Malik, J.S.; Hemani, A. Gaussian Random Number Generation: A Survey on Hardware Architectures. ACM Comput. Surv. 2016, 49, 1–37. [Google Scholar] [CrossRef]
- Maatouk, H.; Bay, X. A new rejection sampling method for truncated multivariate Gaussian random ariables restricted to convex sets. In Mathematics in Monte Carlo and Quasi-Monte Carlo Methods; Springer: Berlin/Heidelberg, Germany, 2016; pp. 521–530. [Google Scholar]
- Morán-Vásquez, R.; Zarrazola, E.; Nagar, D.K. Some Theoretical and Computational Aspects of the Truncated Multivariate Skew-Normal/Independent Distributions. Mathematics 2023, 11, 3579. [Google Scholar] [CrossRef]
- Almaraz Luengo, E. Gamma Pseudo Random Number Generators. ACM Comput. Surv. 2023, 55, 1–33. [Google Scholar] [CrossRef]
- Rubinstein, R.Y.; Kroese, D.P. Simulation and the Monte Carlo Method, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016. [Google Scholar]
- Altiok, T.; Melamed, B. Simulation Modeling and Analysis with ARENA; Elsevier Science & Technology: New York, NY, USA, 2007. [Google Scholar]
- Zhu, S.; Deng, X.; Zhang, W.; Zhu, C. Construction of a New 2D Hyperchaotic Map with Application in Efficient Pseudo-Random Number Generator Design and Color Image Encryption. Mathematics 2023, 11, 3171. [Google Scholar] [CrossRef]
- Bagdasar, O.; Chen, M.; Drăgan, V.; Ivanov, I.G.; Popa, I.L. On Horadam Sequences with Dense Orbits and Pseudo-Random Number Generators. Mathematics 2023, 11, 1244. [Google Scholar] [CrossRef]
- Mahalingam, H.; Rethinam, S.; Janakiraman, S.; Rengarajan, A. Non-Identical Inverter Rings as an Entropy Source: NIST-90B-Verified TRNG Architecture on FPGAs for IoT Device Integrity. Mathematics 2023, 11, 1049. [Google Scholar] [CrossRef]
- Ridley, D.; Ngnepieba, P. Antithetic Power Transformation in Monte Carlo Simulation: Correcting Hidden Errors in the Response Variable. Mathematics 2023, 11, 2097. [Google Scholar] [CrossRef]
- Almaraz Luengo, E. A brief and understandable guide to pseudo-random number generators and specific models for security. Stat. Surv. 2022, 16, 137–181. [Google Scholar] [CrossRef]
- Rukhin, A.L.; Soto, J.; Nechvatal, J.R.; Smid, M.E.; Barker, E.; Leigh, S.; Levenson, M.; Vangel, M.; Banks, D.; Heckert, A.; et al. A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications; Technical Report; NIST: Gaithersburg, MD, USA, 2010. [Google Scholar]
- Marsaglia, G. The Marsaglia Random Number CDROM including the Diehard Battery of Tests of Randomness. 1995. Available online: https://web.archive.org/web/20160220101002/http://stat.fsu.edu/pub/diehard/ (accessed on 1 January 2022).
- Brown, R.G.; Eddelbuettel, D.; Bauer, D. Dieharder: A Random Number Test Suite (Version 3.31.1). 2014. Available online: https://webhome.phy.duke.edu/~rgb/General/dieharder.php (accessed on 1 January 2022).
- Walker, J. ENT: A Pseudorandom Number Sequence Test Program. 2008. Available online: https://www.fourmilab.ch/random/ (accessed on 1 January 2022).
- Evans, D.L.; Bond, P.; Bement, A. FIPS Pub 140-2: Security Requirements for Cryptographic Modules; Federal Information Processing Standards Publication; NIST: Gaithersburg, MD, USA, 2002; Volume 12. [Google Scholar]
- NIST. FIPS 140-2. Security Requirements for Cryptographic Modules; Technical Report; NIST: Gaithersburg, MD, USA, 2001. [Google Scholar]
- NIST. FIPS 140-3. Security Requirements for Cryptographic Modules; Technical Report; NIST: Gaithersburg, MD, USA, 2019. [Google Scholar]
- L’ecuyer, P.; Simard, R. TestU01: A C library for empirical testing of random number generators. ACM Trans. Math. Softw. (TOMS) 2007, 33, 1–40. [Google Scholar] [CrossRef]
- Schmeiser, B.W.; Babu, A.J.G. Beta Variate Generation via Exponential Majorizing Functions. Oper. Res. 1980, 28, 917–926. [Google Scholar] [CrossRef]
- Stern, J.M.; de Bragança Pereira, C.A. Special characterizations of standard discrete models. Revstat-Stat. J. 2008, 6, 199–230. [Google Scholar]
- Kuhl, M.E.; Ivy, J.S.; Lada, E.K.; Steiger, N.M.; Wagner, M.A.; Wilson, J.R. Univariate input models for stochastic simulation. J. Simul. 2010, 4, 81–97. [Google Scholar] [CrossRef]
- Thangjai, W.; Niwitpong, S.A.; Niwitpong, S.; Smithpreecha, N. Confidence Interval Estimation for the Ratio of the Percentiles of Two Delta-Lognormal Distributions with Application to Rainfall Data. Symmetry 2023, 15, 794. [Google Scholar] [CrossRef]
- Pfeifer, D.; Ragulina, O. Adaptive Bernstein Copulas and Risk Management. Mathematics 2020, 8, 2221. [Google Scholar] [CrossRef]
- Malcolm, D.G.; Roseboom, J.H.; Clark, C.E.; Fazar, W. Application of a Technique for Research and Development Program Evaluation. Oper. Res. 1959, 7, 646–669. [Google Scholar] [CrossRef]
- Kelley, J.E. Critical-Path Planning and Scheduling: Mathematical Basis. Oper. Res. 1961, 9, 296–320. [Google Scholar] [CrossRef]
- Bȩtkowski, M.; Pownuk, A. Calculating Risk of Cost Using Monte Carlo Simulations with Fuzzy Parameters in Civil Engineering. In Proceedings of the NSF Workshop on Reliable Engineering Computing, Savannah, Georgia, 15–17 September 2004; pp. 179–192. [Google Scholar]
- Price, A.L.; Patterson, N.J.; Plenge, R.M.; Weinblatt, M.E.; Shadick, N.A.; Reich, D. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 2006, 38, 904–909. [Google Scholar] [CrossRef] [PubMed]
- Kirichenko, L.; Radivilova, T.; Bulakh, V. Machine Learning in Classification Time Series with Fractal Properties. Data 2019, 4, 5. [Google Scholar] [CrossRef]
- Derflinger, G.; Hörmann, W.; Leydold, J. Random Variate Generation by Numerical Inversion When Only the Density is Known. ACM Trans. Model. Comput. Simul. 2010, 20, 1–25. [Google Scholar] [CrossRef]
- Devroye, L. Non-Uniform Random Variate Generation; Springer: New York, NY, USA, 1986. [Google Scholar]
- Hörmann, W.; Leydold, J. Continuous Random Variate Generation by Fast Numerical Inversion. ACM Trans. Model. Comput. Simul. 2003, 13, 347–362. [Google Scholar] [CrossRef]
- Marsaglia, G.; Tsang, W.W. The ziggurat method for generating random variables. J. Stat. Softw. 2000, 5, 1–7. [Google Scholar] [CrossRef]
- Givens, G.H.; Hoeting, J.A. Computational Statistics, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Baumgarten, C. Random variate generation by fast numerical inversion in the varying parameter case. Res. Stat. 2023, 1, 2279060. [Google Scholar] [CrossRef]
- Law, A.M. Simulation Modeling and Analysis, 5th ed.; McGraw-Hill Education: New York, NY, USA, 2015. [Google Scholar]
- Von Neumann, J. Various Techniques Used in Connection with Random Digits. In Monte Carlo Method; Householder, A.S., Forsythe, G.E., Germond, H.H., Eds.; US Government Printing Office: Washington, DC, USA, 1951; Volume 12, National Bureau of Standards Applied Mathematics Series, Chapter 13; pp. 36–38. [Google Scholar]
- Hörmann, W.; Leydold, J.; Derflinger, G. Automatic Nonuniform Random Variate Generation, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Marsaglia, G. The squeeze method for generating gamma variates. Comput. Math. Appl. 1977, 3, 321–325. [Google Scholar] [CrossRef]
- Jöhnk, M. Erzeugung von betaverteilten und gammaverteilten Zufallszahlen. Metrika 1964, 8, 5–15. [Google Scholar] [CrossRef]
- Forsythe, G.E. Von Neumann’s Comparison Method for Random Sampling from the Normal and Other Distributions. Math. Comput. 1972, 26, 817–826. [Google Scholar]
- Ahrens, J.H.; Dieter, U. Extensions of Forsythe’s method for random sampling from the normal distribution. Math. Comput. 1973, 27, 927–937. [Google Scholar]
- Brent, R.P. Algorithm 488: A Gaussian pseudo random number generator. Commun. ACM 1974, 17, 704–706. [Google Scholar] [CrossRef]
- Atkinson, A.C.; Pearce, M.C. The computer generation of Beta, Gamma and Normal Random Variables. J. R. Stat. Soc. Ser. A 1976, 139, 431–461. [Google Scholar] [CrossRef]
- Ahrens, J.H.; Dieter, U. Computer methods for sampling from gamma, beta, poisson and binomial distributions. Computing 1974, 12, 223–246. [Google Scholar] [CrossRef]
- Atkinson, A.C.; Whittaker, J. A Switching Algorithm for the Generation of Beta Random Variables with at Least One Parameter Less than 1. J. R. Stat. Soc. Ser. A 1976, 139, 462–467. [Google Scholar] [CrossRef]
- Atkinson, A.C.; Whittaker, J. Algorithm AS 134: The Generation of Beta Random Variables with one Parameter Greater than and One Parameter Less than 1. J. R. Stat. Soc. Ser. A 1979, 20, 90–93. [Google Scholar] [CrossRef]
- Cheng, R.C.H. Generating Beta Variates with Nonintegral Shape Parameters. Commun. ACM 1978, 21, 317–322. [Google Scholar] [CrossRef]
- Schmeiser, B.W.; Shalaby, M.A. Acceptance Rejection Methods for Beta Variate Generation. J. Am. Stat. Assoc. 1980, 75, 673–678. [Google Scholar] [CrossRef]
- Schmeiser, B.W.; Babu, A.J.G. Errata. Oper. Res. 1983, 31, 802. [Google Scholar]
- Schmeiser, B.W. Generation of Variates from Distribution Tails. Oper. Res. 1980, 28, 1012–1017. [Google Scholar] [CrossRef]
- Fox, B.L. Generation of Random Samples from the Beta F Distributions. Technometrics 1963, 5, 269–270. [Google Scholar] [CrossRef]
- Floyd, R.W.; Rivest, R.L. Algorithm 489: The algorithm SELECT-for finding the ith smallest of n elements [M1]. Commun. ACM 1975, 18, 173. [Google Scholar] [CrossRef]
- Singleton, R.C. Algorithm 347: An Efficient Algorithm for Sorting with Minimal Storage [M1]. Commun. ACM 1969, 12, 185–186. [Google Scholar] [CrossRef]
- Sakasegawa, H. Stratified rejection and squeeze method for generating beta random numbers. Ann. Inst. Stat. Math. Part B 1983, 35, 291–302. [Google Scholar] [CrossRef]
- Zechner, H.; Stadlober, E. Generating beta variates via patchwork rejection. Computing 1993, 50, 1–18. [Google Scholar] [CrossRef]
- Kennedy, D.P. A note on stochastic search methods for global optimization. Adv. Appl. Probab. 1988, 20, 476–478. [Google Scholar] [CrossRef]
- Hung, Y.C.; Balakrishnan, N.; Lin, Y.T. Evaluation of Beta Generation Algorithms. Commun. Stat.-Simul. Comput. 2009, 38, 750–770. [Google Scholar] [CrossRef]
- Barabesi, L.; Pratelli, L. Universal methods for generating random variables with a given characteristic function. J. Stat. Comput. Simul. 2014, 85, 1679–1691. [Google Scholar] [CrossRef]
- Devroye, L. On the computer generation of random variables with a given characteristic function. Comput. Math. Appl. 1981, 7, 547–552. [Google Scholar] [CrossRef]
- Smarandache, F. Introduction to Neutrosophic Statistics; Sitech & Education Publishing: New York, NY, USA, 2014. [Google Scholar] [CrossRef]
- Jdid, M.; Nabeeh, N.A. Generating Random Variables that follow the Beta Distribution Using the Neutrosophic Acceptance-Rejection Method. Neutrosophic Sets Syst. 2023, 58, 139–147. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
Parameters | Methods | ||||
---|---|---|---|---|---|
Alpha | Beta | Gamma | SELECT | SORT | Jöhnk |
1 | 1 | 3.00 | 39.29 | 439.84 | 91.16 |
2 | 3.18 | 103.73 | 433.88 | 135.44 | |
5 | 2.80 | 166.32 | 445.73 | 282.73 | |
10 | 2.99 | 244.14 | 441.03 | 488.30 | |
50 | 2.59 | 646.80 | 476.25 | 2243.62 | |
100 | 2.59 | 1257.66 | 512.18 | * | |
2 | 2 | 3.20 | 158.97 | 431.96 | 272.88 |
5 | 2.59 | 222.41 | 449.40 | 938.62 | |
10 | 2.79 | 296.78 | 435.65 | 2761.89 | |
50 | 2.59 | 710.20 | 475.56 | * | |
100 | 2.19 | 1334.46 | 517.91 | * | |
5 | 5 | 3.19 | 306.19 | 435.85 | * |
10 | 2.20 | 367.11 | 445.19 | * | |
50 | 2.19 | 816.16 | 478.66 | * | |
100 | 2.39 | 1513.51 | 525.20 | * | |
10 | 10 | 2.19 | 475.53 | 466.57 | * |
50 | 2.00 | 958.83 | 478.22 | * | |
100 | 2.40 | 1736.97 | 521.37 | * | |
50 | 50 | 1.78 | 1955.14 | 511.28 | * |
100 | 1.80 | 2842.27 | 553.92 | * | |
100 | 100 | 2.19 | 4028.12 | 587.14 | * |
Parameters | Methods | Parameters | Methods | ||||
---|---|---|---|---|---|---|---|
Alpha | Beta | Gamma | Jöhnk | Alpha | Beta | Gamma | Jöhnk |
0.1 | 0.1 | 4.38 | 47.88 | 0.5 | 0.5 | 4.19 | 57.45 |
0.3 | 4.80 | 50.87 | 0.9 | 4.39 | 71.59 | ||
0.5 | 3.99 | 52.57 | 1 | 4.79 | 76.99 | ||
0.9 | 4.18 | 56.96 | 2 | 3.79 | 97.68 | ||
1 | 2.99 | 55.85 | 5 | 3.18 | 119.79 | ||
2 | 3.20 | 55.65 | 10 | 3.19 | 165.12 | ||
5 | 2.99 | 61.04 | 50 | 3.20 | 365.27 | ||
10 | 2.79 | 63.72 | 100 | 3.19 | 510.84 | ||
50 | 2.60 | 72.91 | |||||
100 | 2.79 | 84.88 | |||||
0.3 | 0.3 | 3.80 | 69.78 | 0.9 | 0.9 | 4.18 | 108.61 |
0.5 | 4.09 | 56.85 | 1 | 3.59 | 104.32 | ||
0.9 | 4.38 | 61.88 | 2 | 3.60 | 126.26 | ||
1 | 3.60 | 59.94 | 5 | 3.39 | 245.40 | ||
2 | 3.39 | 71.03 | 10 | 3.38 | 421.22 | ||
5 | 2.99 | 86.98 | 50 | 2.99 | 1578.84 | ||
10 | 2.99 | 108.32 | 100 | 3.19 | 2835.19 | ||
50 | 3.19 | 218.72 | |||||
100 | 2.99 | 220.33 |
Parameters | Methods | |||
---|---|---|---|---|
Alpha | Beta | BN * | Cheng | Jöhnk |
1 | 1 | 28.04 | 1 | 2.00 |
2 | 2.489 | 1.185 | 3.00 | |
5 | 3.111 | 1.34 | 6.00 | |
10 | 4.148 | 1.402 | 11.00 | |
50 | 8.887 | 1.457 | 51.00 | |
100 | - | 1.464 | 101.00 | |
2 | 2 | 1.329 | 1.061 | 6.00 |
5 | 1.377 | 1.13 | 21.00 | |
10 | 1.689 | 1.18 | 66.00 | |
50 | 3.359 | 1.234 | 1326.00 | |
100 | 5.025 | 1.242 | 5151.00 | |
5 | 5 | 1.09 | 1.101 | 252.00 |
10 | 1.139 | 1.117 | 3003.00 | |
50 | 1.889 | 1.155 | 3.5 × 10 | |
100 | 2.588 | 1.162 | 9.7 × 10 | |
10 | 10 | 1.041 | 1.114 | 1.8 × 10 |
50 | 1.391 | 1.134 | 7.5 × 10 | |
100 | 1.809 | 1.141 | 4.7 × 10 | |
50 | 50 | 1.126 | 1.0 × 10 | |
100 | 2.0 × 10 |
Parameters | Methods | Parameters | Methods | ||||||
---|---|---|---|---|---|---|---|---|---|
Alpha | Beta | Cheng | Jöhnk | Switch * | Alpha | Beta | Cheng | Jöhnk | Switch * |
0.1 | 0.1 | 1.77 | 1.01 | 1.77 | 0.5 | 0.5 | 1.27 | 1.27 | 1.27 |
0.3 | 2.49 | 1.04 | 1.53 | 0.9 | 1.50 | 1.46 | 1.09 | ||
0.5 | 2.70 | 1.06 | 1.35 | 1 | 1.54 | 1.50 | 1.15 | ||
0.9 | 2.84 | 1.09 | 1.09 | 2 | 1.72 | 1.88 | 1.21 | ||
1 | 2.86 | 1.10 | 1.03 | 5 | 1.84 | 2.71 | 1.25 | ||
2 | 2.94 | 1.16 | 1.05 | 10 | 1.89 | 3.70 | 1.26 | ||
5 | 2.99 | 1.25 | 1.07 | 50 | 1.93 | 8.04 | 1.28 | ||
10 | 3.01 | 1.33 | 1.08 | 100 | 1.93 | 11.33 | 1.28 | ||
50 | 3.02 | 1.56 | 1.09 | ||||||
100 | 3.02 | 1.67 | 1.09 | ||||||
0.3 | 0.3 | 1.46 | 1.11 | 1.46 | 0.9 | 0.9 | 1.04 | 1.81 | 1.04 |
0.5 | 1.72 | 1.17 | 1.34 | 1 | 1.07 | 1.90 | 1.16 | ||
0.9 | 1.95 | 1.28 | 1.10 | 2 | 1.26 | 2.76 | 1.17 | ||
1 | 1.98 | 1.30 | 1.09 | 5 | 1.41 | 5.18 | 1.19 | ||
2 | 2.13 | 1.50 | 1.14 | 10 | 1.47 | 8.96 | 1.19 | ||
5 | 2.23 | 1.87 | 1.18 | 50 | 1.52 | 35.76 | 1.20 | ||
10 | 2.27 | 2.27 | 1.20 | 100 | 1.53 | 66.16 | 1.20 | ||
50 | 2.29 | 3.62 | 1.21 | ||||||
100 | 2.30 | 4.44 | 1.21 |
Parameters | Methods | ||
---|---|---|---|
Alpha | Beta | Bisection | NINIGL |
1 | 1 | 687.40 | 0.60 |
2 | 760.75 | 1.40 | |
5 | 761.26 | 1.00 | |
10 | 771.29 | 1.20 | |
50 | 765.05 | 1.00 | |
100 | 738.42 | 1.40 | |
2 | 2 | 732.41 | 2.59 |
5 | 803.14 | 2.39 | |
10 | 821.89 | 2.62 | |
50 | 838.48 | 2.39 | |
100 | 771.99 | 2.19 | |
5 | 5 | 835.62 | 1.60 |
10 | 819.31 | 1.20 | |
50 | 802.67 | 1.60 | |
100 | 795.96 | 1.60 | |
10 | 10 | 792.23 | 1.00 |
50 | 794.36 | 1.59 | |
100 | 810.24 | 1.60 | |
50 | 50 | 756.47 | 1.20 |
100 | 876.26 | 1.40 | |
100 | 100 | 876.65 | 1.39 |
Parameters | Methods | Parameters | Methods | ||||
---|---|---|---|---|---|---|---|
Alpha | Beta | Bisection | NINIGL | Alpha | Beta | Bisection | NINIGL |
0.1 | 0.1 | 743.93 | - | 0.5 | 0.5 | 739.83 | 3.39 |
0.3 | 755.05 | - | 0.9 | 795.65 | 3.99 | ||
0.5 | 753.33 | 44.89 | 1 | 744.47 | 3.06 | ||
0.9 | 820.23 | 43.78 | 2 | 758.80 | 4.39 | ||
1 | 727.21 | 41.89 | 5 | 756.77 | 4.59 | ||
2 | 842.61 | 38.78 | 10 | 782.66 | 4.79 | ||
5 | 834.20 | 39.70 | 50 | 747.51 | 4.79 | ||
10 | 850.57 | 37.70 | 100 | 745.92 | 4.29 | ||
50 | 805.91 | 37.10 | |||||
100 | 813.52 | 37.10 | |||||
0.3 | 0.3 | 759.32 | - | 0.9 | 0.9 | 738.04 | 3.39 |
0.5 | 713.15 | 11.57 | 1 | 704.67 | 2.79 | ||
0.9 | 714.34 | 14.76 | 2 | 790.74 | 3.59 | ||
1 | 848.19 | 13.36 | 5 | 817.37 | 3.39 | ||
2 | 783.48 | 12.77 | 10 | 827.93 | 3.10 | ||
5 | 858.25 | 11.37 | 50 | 807.46 | 3.59 | ||
10 | 848.70 | 10.97 | 100 | 813.41 | 2.99 | ||
50 | 832.72 | 12.17 | |||||
100 | 798.93 | 11.17 |
Parameters | Methods | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Alpha | Beta | B2P * | B2PE * | B4PE * | BA | BB | rbeta | BN * | BNM * | BS * |
1 | 1 | 138.63 | 63.63 | 58.24 | 95.84 | 123.27 | 2.00 | 671.40 | - | 735.03 |
2 | 264.49 | 113.70 | 107.12 | 111.30 | 140.42 | 2.19 | 107.11 | 126.67 | ||
5 | 378.99 | 77.59 | 59.83 | 123.48 | 147.61 | 2.59 | 144.81 | 169.95 | ||
10 | 721.07 | 69.22 | 59.64 | 140.02 | 168.14 | 2.60 | 185.90 | 227.98 | ||
50 | 3392.54 | 64.83 | 56.45 | 132.25 | 157.98 | 2.59 | 458.77 | 499.47 | ||
100 | 6830.86 | 64.02 | 59.45 | 133.24 | 156.58 | 2.59 | 555.32 | 700.73 | ||
2 | 2 | 208.54 | 82.78 | 79.38 | 100.54 | 122.87 | 1.99 | 79.98 | 91.15 | 58.24 |
5 | 187.99 | 75.40 | 60.84 | 105.71 | 125.46 | 2.00 | 79.00 | 106.72 | ||
10 | 287.77 | 75.40 | 60.44 | 110.31 | 132.45 | 2.19 | 92.35 | 169.94 | ||
50 | 1024.27 | 75.41 | 57.84 | 115.29 | 134.64 | 2.39 | 163.76 | 263.10 | ||
100 | 2094.05 | 77.39 | 66.42 | 115.70 | 134.45 | 2.19 | 223.61 | 334.71 | ||
5 | 5 | 175.33 | 78.99 | 48.08 | 103.92 | 128.05 | 2.19 | 73.00 | 99.13 | 49.67 |
10 | 203.26 | 67.63 | 47.87 | 106.31 | 125.47 | 2.00 | 75.80 | 98.34 | ||
50 | 619.75 | 70.21 | 49.87 | 107.31 | 126.26 | 2.19 | 113.50 | 169.15 | ||
100 | 1065.74 | 69.22 | 51.46 | 111.90 | 132.45 | 1.99 | 148.80 | 230.98 | ||
10 | 10 | 210.44 | 68.21 | 48.27 | 105.52 | 130.65 | 2.20 | 70.30 | 76.20 | 45.08 |
50 | 441.21 | 70.81 | 49.07 | 109.30 | 123.87 | 1.99 | 92.55 | 108.71 | ||
100 | 745.02 | 73.00 | 49.06 | 106.12 | 126.27 | 2.19 | 125.07 | 147.80 | ||
50 | 50 | 391.35 | 66.23 | 46.88 | 107.11 | 128.25 | 2.59 | 65.83 | 72.21 | 45.07 |
100 | 492.49 | 67.81 | 45.67 | 106.32 | 128.06 | 2.39 | 72.30 | 81.38 | ||
100 | 100 | 515.02 | 66.62 | 49.07 | 105.32 | 136.04 | 2.39 | 70.60 | 75.20 | 45.48 |
Parameters | Methods | |||||
---|---|---|---|---|---|---|
Alpha | Beta | BA | BC | rbeta | SW1 * | SW2 |
0.1 | 0.1 | 166.39 | 196.48 | 3.59 | 112.49 | |
0.3 | 219.61 | 229.19 | 3.19 | 97.94 | ||
0.5 | 242.16 | 237.17 | 2.79 | 76.80 | ||
0.9 | 239.15 | 255.32 | 2.99 | 68.41 | ||
1 | 257.91 | 246.14 | 2.99 | 63.63 | ||
2 | 270.68 | 244.35 | 3.19 | 68.42 | ||
5 | 255.17 | 248.34 | 2.39 | 70.82 | ||
10 | 254.53 | 246.14 | 2.59 | 66.62 | ||
50 | 261.70 | 246.14 | 2.59 | 69.41 | ||
100 | 253.52 | 247.14 | 2.59 | 75.60 | ||
0.3 | 0.3 | 142.62 | 164.56 | 2.79 | 89.17 | |
0.5 | 153.19 | 179.12 | 2.39 | 85.76 | ||
0.9 | 169.95 | 203.65 | 2.79 | 68.02 | ||
1 | 173.73 | 191.09 | 2.59 | 63.23 | ||
2 | 185.50 | 202.46 | 2.79 | 69.01 | ||
5 | 192.09 | 207.84 | 2.39 | 71.81 | ||
10 | 192.08 | 206.05 | 2.59 | 73.44 | ||
50 | 196.27 | 208.44 | 2.59 | 74.99 | ||
100 | 199.07 | 210.04 | 2.39 | 75.60 | ||
0.5 | 0.5 | 118.89 | 153.99 | 2.39 | 76.20 | |
0.9 | 135.03 | 162.76 | 2.59 | 64.23 | ||
1 | 139.83 | 167.55 | 2.59 | 70.41 | ||
2 | 163.56 | 179.12 | 2.60 | 72.40 | ||
5 | 161.56 | 198.47 | 2.79 | 75.80 | ||
10 | 166.16 | 188.89 | 2.59 | 77.20 | ||
50 | 168.56 | 189.49 | 2.58 | 77.39 | ||
100 | 177.92 | 191.69 | 2.59 | 78.39 | ||
0.9 | 0.9 | 99.54 | 129.65 | 2.19 | 67.42 | |
1 | 101.92 | 135.64 | 2.20 | 73.80 | ||
2 | 118.48 | 146.21 | 2.39 | 72.21 | ||
5 | 128.86 | 160.76 | 2.40 | 74.20 | ||
10 | 132.45 | 165.36 | 2.79 | 73.61 | ||
50 | 137.43 | 169.75 | 2.40 | 75.79 | ||
100 | 135.84 | 174.13 | 2.59 | 75.00 |
Parameters | Methods | |||
---|---|---|---|---|
Alpha | Beta | Gamma | NINIGL | rbeta |
1 | 1 | 3.00 | 0.60 | 2.00 |
2 | 3.18 | 1.40 | 2.19 | |
5 | 2.80 | 1.00 | 2.59 | |
10 | 2.99 | 1.20 | 2.60 | |
50 | 2.59 | 1.00 | 2.59 | |
100 | 2.59 | 1.40 | 2.59 | |
2 | 2 | 3.20 | 2.59 | 1.99 |
5 | 2.59 | 2.39 | 2.00 | |
10 | 2.79 | 2.62 | 2.19 | |
50 | 2.59 | 2.39 | 2.39 | |
100 | 2.19 | 2.19 | 2.19 | |
5 | 5 | 3.19 | 1.60 | 2.19 |
10 | 2.20 | 1.20 | 2.00 | |
50 | 2.19 | 1.60 | 2.19 | |
100 | 2.39 | 1.60 | 1.99 | |
10 | 10 | 2.19 | 1.00 | 2.20 |
50 | 2.00 | 1.59 | 1.99 | |
100 | 2.40 | 1.60 | 2.19 | |
50 | 50 | 1.78 | 1.20 | 2.59 |
100 | 1.80 | 1.40 | 2.39 | |
100 | 100 | 2.19 | 1.39 | 2.39 |
Parameters | Methods | |||
---|---|---|---|---|
Alpha | Beta | Gamma | NINIGL | rbeta |
0.1 | 0.1 | 4.38 | - | 3.59 |
0.3 | 4.80 | - | 3.19 | |
0.5 | 3.99 | 44.89 | 2.79 | |
0.9 | 4.18 | 43.78 | 2.99 | |
1 | 2.99 | 41.89 | 2.99 | |
2 | 3.20 | 38.78 | 3.19 | |
5 | 2.99 | 39.70 | 2.39 | |
10 | 2.79 | 37.70 | 2.59 | |
50 | 2.60 | 37.10 | 2.59 | |
100 | 2.79 | 37.10 | 2.59 | |
0.3 | 0.3 | 3.80 | - | 2.79 |
0.5 | 4.09 | 11.57 | 2.39 | |
0.9 | 4.38 | 14.76 | 2.79 | |
1 | 3.60 | 13.36 | 2.59 | |
2 | 3.39 | 12.77 | 2.79 | |
5 | 2.99 | 11.37 | 2.39 | |
10 | 2.99 | 10.97 | 2.59 | |
50 | 3.19 | 12.17 | 2.59 | |
100 | 2.99 | 11.17 | 2.39 | |
0.5 | 0.5 | 4.19 | 3.39 | 2.39 |
0.9 | 4.39 | 3.99 | 2.59 | |
1 | 4.79 | 3.06 | 2.59 | |
2 | 3.79 | 4.39 | 2.60 | |
5 | 3.18 | 4.59 | 2.79 | |
10 | 3.19 | 4.79 | 2.59 | |
50 | 3.20 | 4.79 | 2.58 | |
100 | 3.19 | 4.29 | 2.59 | |
0.9 | 0.9 | 4.18 | 3.39 | 2.19 |
1 | 3.59 | 2.79 | 2.20 | |
2 | 3.60 | 3.59 | 2.39 | |
5 | 3.39 | 3.39 | 2.40 | |
10 | 3.38 | 3.10 | 2.79 | |
50 | 2.99 | 3.59 | 2.40 | |
100 | 3.19 | 2.99 | 2.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almaraz Luengo, E.; Gragera, C. Critical Analysis of Beta Random Variable Generation Methods. Mathematics 2023, 11, 4893. https://doi.org/10.3390/math11244893
Almaraz Luengo E, Gragera C. Critical Analysis of Beta Random Variable Generation Methods. Mathematics. 2023; 11(24):4893. https://doi.org/10.3390/math11244893
Chicago/Turabian StyleAlmaraz Luengo, Elena, and Carlos Gragera. 2023. "Critical Analysis of Beta Random Variable Generation Methods" Mathematics 11, no. 24: 4893. https://doi.org/10.3390/math11244893
APA StyleAlmaraz Luengo, E., & Gragera, C. (2023). Critical Analysis of Beta Random Variable Generation Methods. Mathematics, 11(24), 4893. https://doi.org/10.3390/math11244893