
Citation: Almaraz Luengo, E.;

Gragera, C. Critical Analysis of Beta

Random Variable Generation

Methods. Mathematics 2023, 11, 4893.

https://doi.org/10.3390/

math11244893

Academic Editor: Antonio Di

Crescenzo

Received: 28 October 2023

Revised: 18 November 2023

Accepted: 20 November 2023

Published: 6 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Critical Analysis of Beta Random Variable Generation Methods
Elena Almaraz Luengo 1,* and Carlos Gragera 2

1 Department of Statistics and Operational Research, Faculty of Mathematical Science, Complutense University
of Madrid, 28040 Madrid, Spain

2 Faculty of Mathematical Science, Complutense University of Madrid, 28040 Madrid, Spain; cgrage01@ucm.es
* Correspondence: ealmaraz@ucm.es

Abstract: The fast generation of values of the beta random variable is a subject of great interest
and multiple applications, ranging from purely mathematical and statistical ones to applications in
management and production, among others. There are several methods for generating these values,
with one of the essential points for their design being the selection of random seeds. Two interesting
aspects converge here: the use of sequences as inputs (and the need for them to verify properties such
as randomness and uniformity, which are verified through statistical test suites) and the design of the
algorithm for the generation of the variable. In this paper, we analyse, in detail, the algorithms that
have been developed in the literature, both from a mathematical/statistical and computational point
of view. We also provide empirical development using R software, which is currently in high demand
and is one of the main novelties with respect to previous comparisons carried out in FORTRAN. We
establish which algorithms are more efficient and in which contexts, depending on the different values
of the parameters, allowing the user to determine the best method given the experimental conditions.

Keywords: beta random variable; dieharder; hypothesis testing; NIST; pseudo-random number;
simulation; statistical tests suite; TestU01

MSC: 11K45; 65C10

1. Introduction

The study of different algorithms for generating random variables is currently a topic
of great interest (see, for example, [1–5], among others).

The rapid generation of beta random variables is essential for simulating real models
in a diverse group of disciplines. It is possible to define random variable (r.v.) generation
as the process of obtaining a realisation of a r.v. from a target distribution.

The generation of random numbers or numbers that behave as such is crucial for
obtaining sequences of values that come from other distributions, such as normal, exponen-
tial, or beta distributions. To this end, the simulation process begins with the generation
of values that can be considered sequences of independent numbers which come from a
uniform variable in the interval (0,1) (or, if working at bit level, 0–1 independent uniformly
distributed values) that will constitute the starting point for the algorithmic generation of
values of the desired probability distribution. It is therefore essential to start from quality
values (i.e., values that really verify the desired properties of randomness and uniformity).
It is at this point that we will take a closer look at some of the most important concepts
related to random and pseudo-random sequences and the tests that must be carried out to
check the quality of the sequences. In general, it is possible to speak of true random num-
bers and pseudo-random numbers (see, for example, [6–11] among others). The former are
based on physical sources and do not need an initial input to be generated. They are not ex-
pected to show any cyclical patterns or correlations between the generated data. The latter
are sets of values that, although generated through algorithms and an initial seed, resemble
values from independent realisations of a uniform r.v. in the interval (0, 1) (U(0, 1)). As they

Mathematics 2023, 11, 4893. https://doi.org/10.3390/math11244893 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11244893
https://doi.org/10.3390/math11244893
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-5591-4550
https://doi.org/10.3390/math11244893
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11244893?type=check_update&version=2

Mathematics 2023, 11, 4893 2 of 30

are generated via deterministic algorithms, they are reproducible. Generators that produce
the first type of numbers are called true random number generators (TRNGs), while the
second type is generated by pseudo-random number generators (PRNGs). Given the high
cost, both material and temporal, of using TRNGs, since it is necessary to work with an
entropy source and a processing function, it is more common to work with PRNGs, since
they are much faster and computationally more efficient. One line of research related to this
generation is based on the creation of more powerful and secure algorithms that allow these
sequences to be obtained while also providing a certain degree of security that prevents
the data obtained from allowing knowledge of the underlying algorithm (in this sense,
the study of the so-called cryptographically secure pseudo-random number generators is
of interest). For more details on the generation of pseudo-random numbers, see [12].

Once the sequence of pseudo-random numbers has been obtained, and before being
used for other purposes such as the simulation of a system or the generation of values of
other random variables, it is necessary to check whether the properties of uniformity and
randomness (and in the case of working in cryptographic applications, unpredictability)
are verified. For this purpose, different hypothesis tests are used to test them from different
perspectives. The aim is to measure whether the results obtained with the samples under
study are compatible with those that should be obtained in the case of working with
sequences that are random. By carrying out numerous tests on different sequences of a
generator, it will be possible to decide on the goodness of the generator, and, therefore, it
will be possible to decide whether it is appropriate to use the sequences in question for
subsequent analyses. It is important to emphasise this aspect because various algorithms
for generating beta random variables will be discussed below, starting from certain inputs
that assume a certain prior distribution for which, in the event that this is not being verified,
the results of such algorithms would not be as expected.

In order to check sequences effectively, different sets of tests known as test suites or
test batteries are used. There are many suites in the literature, such as NIST STS 800-22 [13],
Diehard [14], Dieharder [15], ENT [16], FIPS [17–19], and TestU01 [20]. The most currently
used suites are NIST STS 800-22, Dieharder, and TestsU01. Once the sequences have been
checked and found to be of quality, they can then be used in the downstream processes
where they need to be used.

In this paper, we will focus on analysing the existing algorithms in the literature for
the generation of beta random variables. The study will be carried out from a critical
point of view and will analyse the mathematical/statistical and computational properties
of such algorithms under the prior assumption that the inputs of such algorithms have
been previously checked by means of a suite of statistical tests. This is an exhaustive and
more complete review that includes all the methods developed, classified by typology,
and provides an overview of the different methods used in the development of the methods.
Additionally, we will carry out an empirical study to analyse the performance of the
different algorithms using R software, which is one of the most demanded programs at
present, both in the academic and research fields, and which also provides free access.

The outline of this work is as follows: in Section 2, the basic concepts about the dis-
tribution under study are explained; in Section 3, the main existing methods in scientific
research for the generation of the beta r.v. are discussed in detail; in Section 4, a compu-
tational study on the efficiency of the previously explained methods is carried out; and
finally in Section 5, the main conclusions of this work are given.

2. Preliminaries

A r.v. is a measurable function f : (Ω,A, P)→ (R,B), where (Ω,A, P) is a probability
space (Ω is the sample space, A ⊂ P(Ω) is a σ-algebra, and P is the probability measure
defined on (Ω,A)), and B is Borel’s σ-algebra over R.

Mathematics 2023, 11, 4893 3 of 30

A beta r.v. with the parameters α > 0 and β > 0 (denoted by X ∼ beta(α, β)) is a
continuous r.v. with a density

f (x) =
xα−1(1− x)β−1

B(α, β)
, 0 ≤ x ≤ 1 (1)

where B(α, β) =
∫ 1

0 uα−1(1− u)β−1du = Γ(α+β)
Γ(α)Γ(β)

.
The density of this distribution can take a number of interesting different forms

depending on its parameters. This versatility in the forms it can take is what makes the beta
r.v. so important in modelling real-world phenomena (often after re-scaling the defining
interval to the interval [a, b] via the transformation a + (b− a)X). In addition, special cases
include the uniform r.v. when α = β = 1; the gamma r.v. on the boundary when α → ∞,
β → ∞, and α/β remains constant; and the normal r.v. when α → ∞, β → ∞, and α = β
among the most relevant ones. Also, small transformations of the beta distribution provide
many of the families of the Pearson distribution system [21]. By providing a relationship
between these important distributions, the beta r.v. can be a suitable model where the more
commonly used distributions fail. This versatility is important in simulation modelling,
as it is often used when closed-form results are more difficult to obtain, such as when
component lifetimes do not follow a normal, exponential or Erlang distribution [21]. This is
why beta r.v. is widely used in Bayesian statistics [22], simulation [23,24], management and
production models [25–27], control systems [28], and in the study of genome structures [29],
machine learning [30], among many others.

3. Methods for Generating Beta Random Variables

In this section, we will describe the main methods for generating beta random vari-
ables, from the most general methods (i.e., they are not specifically designed to generate
values of beta random variables, and they can be difficult to adapt and are, in general, more
computationally inefficient as a result) to more specific and concrete methods.

3.1. Inverse Transform Method

Let X be a continuous r.v. with a cumulative distribution function F which is con-
tinuous and strictly increasing in (0, 1). Let F−1 be the inverse of F. The method starts
by generating U ∼ U(0, 1) and afterward takes X = F−1(U). To check the consistency
of the algorithm, let us note the following for x ∈ R: P(X ≤ x) = P(F−1(U) ≤ x) =
P(U ≤ F(x)) = F(x). For more details about this method and improvements, see, for
example, [31].

One of the main characteristics of this method is its simplicity, as it allows the gener-
ation of random variables from only one uniform r.v. and the calculation of the inverse
distribution function F−1. Moreover, it preserves the structural properties of the underlying
uniform pseudo-random number generator. This makes it possible to generate correlated
random variables, generate order statistics efficiently, and obtain samples from truncated
distributions or marginal distributions in a simple way [32]. But this method also has
disadvantages, since it is only computationally efficient and accurate if F−1 is known.
For a beta r.v., this only happens when either of its two parameters is equal to one (see
Algorithm 1). Regrettably, it is not always possible to obtain F−1 (see [33,34]), and thus
other approaches are employed, such as numerical methods (even if they are approximate).
Among the most well-known methods of numerical inversion are the “root-finding algo-
rithms”, among which are Newton’s method, the false position method [35], and the bisec-
tion method [32], but these algorithms are generally characterised by their time-consuming
nature. Other methods use the interpolation of the tabulated values of F, as in [33]. Finally,
in [31], another interesting algorithm was designed (NINIGL) that allowed continuous
random variables such as beta ones to be generated by numerical inversion.

Mathematics 2023, 11, 4893 4 of 30

Algorithm 1 Inverse transform method for generating beta(α, 1)
Require: α
Output: X ∼ beta(α, 1)
1: Generate U ∼ U(0, 1)
2: X ← U

1
α

3: return X

In [31], a new method of inversion is proposed. It is the first algorithm of its kind based
on error control, which can be applied to all smooth and bounded densities. The authors
use polynomial interpolation techniques of inverse CDF and Gauss–Lobatto integration in
their development. They apply their algorithm not only to beta variable generation, but also
to normal, gamma, and t-distributions. This is a very fast algorithm with accuracy close to
machine precision. This research line is currently being pursued, and we can highlight very
recently published works that are based on the previous one, for example [36], where the
author presents an inversion method designed in the varying parameter case, if a suitable
density transformation can be found to avoid running the configuration for each parameter.

3.2. Composition Method

This method is applied when the distribution function F(x) of the variable to be
generated can be expressed as a combination of other distributions F1, F2, . . . that are easier
to sample than the original one. That is, F(x) = ∑∞

j=1 pjFj(x) with pj ≥ 0, ∑∞
j=1 pj = 1

and Fj(·) a cumulative distribution function of a r.v. ∀ j. To verify the consistency of this
method, note that: P(X ≤ x) = ∑∞

j=1 P(J = j)P(X ≤ x | J = j) = ∑∞
j=1 pjFj(x) = F(x).

Algorithm 2 shows this method, it is suitable when the distribution we want to
generate is itself a mixture. For other types of distributions, the application of this method
can be complex. Therefore, this method is often used in conjunction with other principles.

Algorithm 2 Composition method for generating beta(α, β) r.v. [37]

Require: Decomposition of the distribution function F(x) = ∑∞
j=1 pjFj(x)

Output: Random sample x from the beta(α, β) r.v.
1: Generate a random index J such that P(J = j) = pj for j = 1, 2, . . .
2: Generate x with distribution FJ(·)
3: return x

3.3. Acceptance-Rejection (A–R) Method

This method was proposed by John von Neumann in 1951 [38]. It is a flexible and
efficient method for generating continuous random variables. The concept of acceptance–
rejection consists of generating random samples from a given distribution and discarding
some of them so that the remaining samples follow the desired distribution. This idea,
together with the results described hereafter (whose proofs can be seen in [39]), will enable
the method to be established and its consistency to be justified.

Theorem 1. Let f (x) be a density function and c be a nonnegative constant. If the random
pair (X, Y) is uniformly distributed in Gc f = {(x, y) : 0 < y ≤ c f (x)}, then X is a r.v. with a
density f (x).

Theorem 2. Let (X1, Y1), (X2, Y2), (X3, Y3), . . . be a sequence of independent and identically
distributed (i.i.d.) random pairs distributed uniformly in a set A. Then, for a (measurable) subset
B ⊂ A with P((X, Y) ∈ B) > 0, the subsequence of all pairs (Xi, Yi) ∈ B is a sequence of i.i.d.
pairs uniformly distributed in B.

Theorem 2 establishes that all accepted pairs are uniformly distributed over the
region G f between the density function f and the x axis. Under Theorem 1, one can then
ensure that the x coordinate of these accepted pairs follows a distribution with a density f .
Furthermore, the following theorem shows the reciprocal idea to that of Theorem 1:

Mathematics 2023, 11, 4893 5 of 30

Theorem 3. Let X be a r.v. with a density g(x) and Y be a uniform r.v. in the interval (0, cg(X)).
Then, for some constant c > 0, (X, Y) is uniformly distributed in Gc f = {(x, y) : 0 < y ≤ c f (x)}.

For the proof, see [32]. This method uses a density function f (x) and a domi-
nant function t(x) ≥ f (x). The original description of the method used the maximum
of the density as the dominant function t(x) = maxx f (x). For α, β > 1, it is possi-
ble to take t(x) = f

(
p−1

p+q−2

)
. This function t(x) is not really a density function since

c =
∫ ∞
−∞ t(x)dx ≥

∫ ∞
−∞ f (x)dx = 1, but the function g(x) = t(x)

c is. Therefore, a common
method for generating samples of a t(·) function for a density f (·) is to choose another
density function g(·) from which samples can be easily generated and find a constant c > 0
such that cg(x) ≥ f (x) for all x in the domain of f (·). A constant c can be found by taking
c = maxx>0

{
f (x)
g(x)

}
. By setting t(x) = cg(x), it is possible to obtain Algorithm 3.

Algorithm 3 Acceptance-rejection method for generating a beta(α, β) r.v.

Require: Density of a beta r.v. f (x), constant c and density g(x) such that cg(x) ≥ f (x)
Output: Random sample x with distribution beta(α, β)

1: repeat
2: Generate x with density g(·)
3: Generate u ∼ U(0, 1)
4: until u ≤ f (x)

cg(x)
5: return x

The execution time of Algorithm 3 depends on (1) the time taken to generate x,
(2) the time taken for the comparison u ≤ f (x)

cg(x) and (3) the expected number of iterations
c until the required number of values of X is achieved. The loop condition requires
constantly evaluating the function f (x) and is not always easy, especially in the case of
a beta r.v. By adding an intermediate step to Algorithm 3, it is possible to accelerate
the process. If there is a simpler way to evaluate and minorise the function s(x) for the
density f (x) (i.e., s(x) ≤ f (x) ∀x ∈ [0, 1]), then it is not necessary to calculate the density
function f to accept the sample. If the pair (x, ucg(x)) lies below the curve s(x), then x is
accepted directly. This modification is called the squeeze method [40], which is illustrated
in Algorithm 4.

Algorithm 4 The squeeze method

Require: Density f (x) of a beta r.v., constant c and density g(x) such that cg(x) ≥ f (x), minorising
function s(x)

Output: Random sample x coming from beta(α, β) r.v.
1: repeat
2: Generate x with density g
3: Generate u ∼ U(0, 1)
4: if u ≤ s(x)

cg(x) then go to 6

5: until u ≤ f (x)
cg(x)

6: return x

3.3.1. Jöhnk’s Algorithm

This method shows that, starting from two independent U(0, 1) random variables
Y and Z, if Y1/α + Z1/β ≤ 1, then X = Y1/α/(Y1/α + Z1/β) ∼ beta(α, β) (see [41]). The method
is valid for all beta distributions with parameters α > 0 and β > 0, but it requires on
average 1

P(Y+Z≤1) =
Γ(α+β+1)

Γ(α+1)Γ(β+1) iterations (see [32]), and these grow rapidly with α and
β; that is, when α and β are large parameters, the computational cost is high, and thus
it is recommended to restrict their use to beta(α, β) such that α, β < 1. This algorithm is
not used anymore because it is not as efficient as other methods. The pseudo-code is in
Algorithm 5.

Mathematics 2023, 11, 4893 6 of 30

Algorithm 5 Jöhnk’s algorithm [41]

Require: Parameters α and β
Output: Random sample x coming from beta(α, β) r.v.

1: repeat
2: Generate u, v ∼ U(0, 1)
3: y← u1/α

4: z← v1/β

5: until y + z ≤ 1
6: return x =

y
y+z

3.3.2. Forsythe’s Method

The basic method is described in [42], and some extensions and applications can be
seen in [43,44]. It consists of two parts: a first step where an interval is selected to generate
the X r.v. and a second step where the exact value within the interval is determined by
the A–R technique. This method allows the generation of random variables with a density
f (x) = Ce−B(x), where B(x) is an increasing function of x in (0, ∞) and C is a real con-
stant. The successive intervals of x have limits q0, q1, . . . , verifying B(qk)− B(qk−1) ≤ 1.
For each interval of x, two constants are calculated: rk =

∫ qk
0 f (x)dx and dk = qk − qk−1

(k = 1, . . . , K). The number of intervals K is chosen so that rK exceeds the largest represen-
tative number less than one. In addition, to sample within the interval, it is appropriate to
define the following function: Gk(x) = B(qk−1 + x)− B(qk−1).

Algorithm 6 is divided into two parts: a first loop that allows us to choose the interval
[qk−1, qk) to which x will belong and a second one that will determine the value of x in
that interval.

Algorithm 6 Forsythe’s algorithm [42]

Require: Functions B(X), G(X), constants qk, rk, dk
Output: Random sample x with distribution beta(α, β)

SELECTION OF THE INTERVAL
1: k← 1
2: Generate u ∼ U(0, 1)
3: if u <= rk then go to 5
4: else k← k + 1 go to 3

GENERATION OF x
5: Generate u ∼ U(0, 1)
6: w← udk
7: t← Gk(w)
8: Generate v ∼ U(0, 1)
9: if v ≥ t then

10: return x ← qk−1 + w
11: else
12: Generate u ∼ U(0, 1)
13: if u < v then t← u go to 8
14: else go to 5

For a beta r.v. with parameters α and β it follows that

B(x) = −(α− 1) log(x)− (β− 1) log(1− x) (2)

Gk(x) = −(α− 1) log
(

1 +
x

qk−1

)
− (β− 1) log

(
1− x

1− qk−1

)
(3)

As for the number of intervals, in [45], it is proposed to control their width by successively
solving Gk(x) = gmax, finding it satisfactory to take a value of 0.2 for gmax. The constants rk are
obtained directly by integrating the density.

The main disadvantage of this method is that it requires continuous calculation of the constants
qk, dk and rk, which reduces its efficiency.

Mathematics 2023, 11, 4893 7 of 30

In [45], a comparative analysis (in µs) of the performance of Jöhnk’s and Fosythe’s algorithms
for the case of α = β < 1 was performed by programming them in FORTRAN on two computers:
a Cyber 73-14 and an IBM 360/65. In this case, Forsythe’s algorithm turned out to be more efficient
than Jöhnk’s algorithm for α = β < 1 analysed on the Cyber 73-14 and IBM 360/65, except for the
case where α = 0.1. As the value of α increased, the execution time in Forsythe’s algorithm remained
approximately the same, whereas in the case of Jöhnk’s algorithm, it tended to be little more than a
half as fast as Forsythe’s. In this paper, the case α = β > 1 is also analysed, and Forsythe’s method is
compared to other methods which will be described later.

3.3.3. Ahrens and Dieter’s Methods
These methods are particular cases of the A–R method based on the density of a normal r.v.

The beta distribution has as its domain the interval [0, 1], and when its parameters take values
greater than one, its density function is bounded. This is why the density function of a beta dis-
tribution can be increased using a normal r.v. and not have any problem with tails. In [46], this
idea was used to modify the A–R method so that samples from a beta distribution of the param-
eters α, β > 1 could be generated by using a majorising function proportional to the density of
a normal r.v. To perform this method, the beta density function is taken, without loss of general-

ity, as f (x) =
(x

A
)A
(

1−x
B

)B
CC, where A = α− 1, B = β− 1 and C = A + B = α + β− 2. As proven

in [46], f (x) ≤ exp
(
−2C

(
x− A

C

)2
)

, ∀x ∈ [0, 1]. The left-hand side of the inequality corresponds to

the density of a beta r.v., while the right-hand side is proportional to the density of a normal r.v. with
a mean µ = A

C and standard deviation σ = 1
(2C

1
2)

.

In Algorithm 7, the pseudo-code of this variant is presented.

Algorithm 7 BN algorithm ([46], α, β > 1)

Require: Parameters α > 1 and β > 1
Output: Random sample x with distribution beta(α, β)

1: A← α− 1, B← β− 1, C ← A + B, L← C log C, µ← A
C , σ← 0.5

C
1
2

2: Generate z ∼ N(0, 1)
3: x ← zσ + µ
4: if x < 0 or x > 1 then go to 2
5: Generate u ∼ U(0, 1)
6: if log u > A log

(x
A
)
+ B log

(
1−x

B

)
+ L + 0.5z2 then go to 2

7: else
8: return x

Generating samples of a uniform r.v. and a normal r.v. plus three logarithmic evaluations are the least

efficient computations of this algorithm. The average number of iterations is (
1
2 π

C)
1
2 AA BBΓ(α+β)

CCΓ(α)Γ(β)
≈ 1

2
(A+B)

(AB)
1
2

.

This approximation is based on Stirling’s formula [46] and is valid except for small values of α and β.
This method reaches its maximum efficiency in the symmetric case α = β. For this case, the version
of Algorithm 7 developed thus far can be improved. If α = β, then A = B, C = 2A and step 13 tests

whether u ≤ (4x(1− x))Ae
z2
2 is true. For x = zσ + µ, this condition can be written as u ≤ q(z) with

q(z) =
(

1−
1
2 z2

A

)A
e

z2
2 . In addition, this function q(·) can be bounded to speed up the algorithm such

that 1−z4

(8α−12) ≤ q(z) ≤ 1−z4

(8α−8) +
1
2

(
z4

(8α−8)

)2
. The pseudo-code can be seen in Algorithm 8.

In [46], the authors made a comparison in µs of the BN and BS algorithms programmed in
FORTRAN and found that the computational time stabilised quickly for 150 µs in the symmetric
case. In [45], a comparison of the performance (in µs) of the BN algorithm, general rejection method,
Forsythe’s method and a method based on order statistics was carried out in FORTRAN on two
computers: a Cyber 73-14 and an IBM 360/65. For the case where α = 2, the general rejection method
was faster than the BN algorithm but slower than Forsythe’s algorithm. For the rest of the α values
analysed, it was slowest and inefficient in the Cyber 73-14 and one of the slowest in the IBM 360-65.
For values of α > 3, the BN algorithm provided the second fastest algorithm, with Forsythe’s method
being the fastest for all integers α except two.

Mathematics 2023, 11, 4893 8 of 30

Algorithm 8 BS algorithm ([46], α = β > 1.5)
Require: Parameter α > 1.5
Output: Random sample x with beta(α, α) distribution

A← α− 1
t← (A + A)

1
2

Generate z ∼ N(0, 1)
x ← 1

2 (1 +
z
t)

if x < 0 or x > 1 then go to 3
Generate u ∼ U(0, 1)
if u ≤ 1− z4

(8α−12) then
return x

else if u ≥ 1− z4

(8α−8) +
1
2

(
z4

(8α−8)

)2
then go to 3

else if log u > A log(4x(1− x)) + z2

2 then go to 3
else

return x

3.3.4. Switching Algorithms
In [47], a new procedure was developed to generate beta random variables with both parameters

or at least one of them being less than one for densities of the form

f (x) = c f1(x) f2(x) (4)

However, it also combines the composition and inversion methods.
Let g(x) = k1 f1(x) be a density function with an associated distribution function G. If X is a r.v.

with density g(x) and U ∼ U(0, 1), then we can deduce using the A–R method that X is accepted if
U sup f2 ≤ f2(X). The average number of iterations required is c sup f2

k1
. This method is particularly

useful for unbounded densities. In [47], two cases were developed: Case 1, with both parameters
being less than one, and Case 2, with one parameter being less than one and the other being higher
than one.

In Case 1, the density is not bounded when x = 0 or x = 1. To solve the difficulties this implies
in the rejection algorithm, a composition is employed so that the range [0, 1] to which x belongs is
divided into two: [0, t] and (t, 1]. When x takes values greater than t, the roles of f1 and f2 of the
density function in Equation (4) are switched. For this reason, this algorithm is named the “switching
algorithm”. Starting from the density of Equation (4), then following is taken:

f1(x) = αxα−1

f2(x) = β(1− x)β−1
(5)

To generate a sample x from a beta r.v., we have that x ∈ [0, t] with a probability p, while x ∈ (t, 1]
with a probability 1− p. If 0 ≤ x ≤ t, then x is generated from the density {αxα−1/tα, 0 ≤ x ≤ t} through
the inversion method, while if t < x ≤ 1, then x is generated from {β(1− z)β−1/(1− t)β, t < z ≤ 1}. From
the calculations described in detail in [47], the probability value p and the optimal value of t are
obtained as a function of the parameters of the distribution beta(α, β) to be generated:

t =
√

α(1− α)√
β(1− β) +

√
α(1− α)

(6)

p =
βt

α(1− t) + βt
(7)

At first, this new algorithm requires generating an exponential r.v. with a parameter 1,
E ∼ exp(1) and two uniform random variables in [0, 1]. The first uniform r.v. U is used in the
U < p test that dictates whether to generate x ∈ [0, t] or x ∈ (t, 1], while the second uniform V
is needed to generate x itself through the inversion method. However, with the properties of the
uniform variable, if U < p, then U/p also follows a uniform distribution. Therefore, it is not necessary
to generate V, and it is sufficient to generate x from U/p or (1−U)/(1− p), depending on whether the
test U < p is verified or not. In Algorithm 9, a pseudo-code for this method is described.

Mathematics 2023, 11, 4893 9 of 30

Algorithm 9 has an acceptance rate 1/e, with

e =
Γ(α + 1)Γ(β + 1)

Γ(α + β)

t(1−α)(1− t)(1−β)

βt + α(1− t)

being the efficiency [47].
Case 2 does not differ much from the previous one as far as the procedure is concerned. Here,

f1 and f2 are taken as in Equation (5), and x is generated from the same densities. However,
the calculation of p and the optimal value of t varies. Now, p =

βt
βt+α(1−t)β and t must satisfy

h(t) = βt + (α− 1)(1− t)β − βt(1− t)(β−1) = 0. Except for particular cases, this equation cannot
be solved analytically, but it is easily solved numerically. By solving it in this way, Atkinson and
Whittaker [47] concluded that the value closest to the optimum one is obtained when t = (1−α)

(β+1−α)
.

Algorithm 9 Switching algorithm [47,48] (SW2 (α, β < 1))

Require: Parameters α < 1 and β < 1
Output: Random sample x with distribution beta(α, β)

1: t←
√

α(1−α)√
β(1−β)+

√
α(1−α)

2: p← βt
α(1−t)+βt

3: Generate U ∼ U(0, 1)
4: Generate E ∼ exp(1)
5: if U > p then

6: X = 1− (1− t)
(

1−U
1−p

)1/β

7: if (1− α) log
(

X
t

)
≤ E then

8: return X
9: else go to 3

10: else

11: X = t
(

U
p

)1/α

12: if (1− β) log
(

1−X
1−t

)
≤ E then

13: return X
14: else go to 3

By applying this modification in Algorithm 9, Algorithm 10 is obtained. The efficiency of
Algorithm 10 is

e =
Γ(α + 1)Γ(β + 1)

Γ(α + β)

1
βtα + α(1− t)βtα−1

See [47] for more information.

Algorithm 10 Switching algorithm [47,48] (SW1 (α < 1, β > 1))
Require: Parameters α < 1 and β > 1
Output: Random sample x with distribution beta(α, β)

1: t← (1−α)
(β+1−α)

2: p← βt
α(1−t)+βt

3: Generate U ∼ U(0, 1)
4: Generate E ∼ exp(1)
5: if U > p then

6: X = 1− (1− t)
(

1−U
1−p

)1/β

7: if (1− α) log
(X

t
)
≤ E then

8: return X
9: else go to 3

10: else

11: X = t
(

U
p

)1/α

12: if (1− β) log (1− X) ≤ E then
13: return X
14: else go to 3

Mathematics 2023, 11, 4893 10 of 30

A comparative analysis of the performance (in µs) of the SW1 and SW2 algorithms by program-
ming them in FORTRAN on a Cyber 73-14 is presented in [47]. In particular, in Case 1, the Jöhnk’s
and switch algorithms were compared. If α + β < 1, then Jöhnk’s algorithm is preferable, while if
α + β > 1, then the switching algorithm is faster. In Case 2, Whittaker suggested an A–R algorithm
without decomposition, and its pseudo-code can be seen in Algorithm 11. This method was compared
to the switch algorithm, resulting in the last one being faster in all studied parameter combinations.

Algorithm 11 Whittaker’s algorithm [47] (α < 1, β > 1)

Require: Parameters α < 1 and β > 1
Output: Random sample x with distribution beta(α, β)

1: Generate U ∼ U(0, 1) and E ∼ exp(1)
2: Set X = U1/α

3: if (1− β) log(1− X) ≤ E then accept X. Otherwise go to 1

3.3.5. Cheng’s Methods
The method presented in [49] is based on the A–R method by applying it to second-type beta

variables beta2(α, β). (The density of a beta2(α, β) r.v. is f (X) = xα−1

B(α,β)(1+x)α+β , x > 0, where B(α, β) is

the beta function). If Y ∼ beta2(α, β), then Z = Y
1+Y ∼ beta(α, β) [49].

Based on Algorithm 3, for generating values of a B2(α, β) r.v., we must select f (x) as a density of
a beta2(α, β) r.v. and g(x) = λµxλ−1(µ+ xλ)−2, where µ and λ are parameters set to obtain a small
value for c. Cheng suggested [49] µ = (α

β)
λ and

λ =

min(α, β) , if min(α, β) ≤ 1√
2αβ−(α+β)

α+β−2 , if min(α, β) > 1
(8)

Additionally, c = max(f /g) is taken as a function of the given parameters c = 4αα ββ

λB(α,β)(α+β)α+β .
In Algorithm 12 the pseudo-code of this method is presented.

Algorithm 12 BA algorithm [49]

Require: Parameters α and β
Output: Random sample x with distribution beta(α, β)

INITIALISATION
1: a← α + β
2: if min(α, β) ≤ 1 then b← max(α−1, β−1)

3: else b←
√

a−2
2αβ−a

4: g← α + b−1

GENERATION
5: Generate u1, u2 ∼ U(0, 1)
6: v← b log

(
u1

(1−u1)

)
7: w← αev

8: if a log
(

a
(β+w)

)
+ gv− 1.3862944 < log

(
u2

1u2
)

then go to 5 . Constant is log(4)

9: return x = w
(β+w)

The time required for this algorithm depends mainly on the number of iterations c needed
to obtain a sample. It is interesting to distinguish the behaviour of this quantity in two different
cases: (1) when min(α, β) > 1, c does not rise approximately above 1.47, and (2) when min(α, β) ≤ 1,
c reaches 4. This duality behaviour suggests modifying Algorithm 12 with the goal of increasing its
speed for each of the cases. In this way, Cheng [49] developed (1) Algorithm BB for min(α, β) > 1
and (2) Algorithm BC for min(α, β) ≤ 1.

Algorithm 12 requires four logarithmic evaluations to be performed between steps 6 and 8. This
can be computationally demanding. When the rejection rate is low (min(α, β) > 1), the logarithmic
evaluation of step 6 cannot be avoided. However, a preliminary test can be performed to avoid the
evaluations of step 8. The idea behind this test resides in the property that a state as long as log z is a

Mathematics 2023, 11, 4893 11 of 30

concave function, and its tangent always lies above the curve [49]. Therefore, θz− log(θ)− 1 ≥ z,
∀z, θ > 0. Let z = β + W. If the test

m log(m)− log 4 + aV −m{θ(β + W)− log(θ)− 1} ≥ log(U2
1U2) (9)

is satisfied, then the value X = W
β+W will be accepted.

Regarding the choice of θ, in [49], it was concluded that taking θ = 1/(α + β) is the best option
to maximise the conditional probability of satisfying the test in Equation (9) given that the algorithm
is accepted. This value for θ causes a drawback: it must be ensured that α < β. However, since
if X ∼ beta(α, β), then 1− X ∼ beta(β, α) [37], it is possible to take without loss of generality α

and β as the minimum and maximum, respectively, of the original parameters α0 and β0, and if an
exchange occurs between the original parameters and those taken for the algorithm, then X = b

(b+W)

is returned instead of X = W
(b+W)

[49].

It is also possible to avoid evaluating log(U2
1U2) in the preliminary test (Equation (9)) as

discussed in [49]. The exact value of θ is not critical for this test, and θ = 5 can be taken independently
of the values of α and β. These modifications are given in Algorithm 13.

For the case where min(α, β) ≤ 1, rejects must be detected beforehand by performing pre-
liminary tests between steps 6 and 8 of Algorithm 12. For this purpose, the following results are
used [49]:

Lemma 1. If U1 < 1
2 and α ≥ β, then R(x) =

f (x)
Cg(x) verifies R(U1) ≤ k1(1 − 2U1)

−2, where

k1 =
δ(1+3β)

4(18(α
β)−14) .

Lemma 2. If U1 ≥ 1
2 and min(α, β) = β ≤ 1, then U−2

1 ≤ 4R(U1) ≤ k2U−2
1 , where k2 =

1+(2+δ−1)β
4

with δ = 1 + α− β.

Algorithm 13 BB algorithm [49] (min(α0, β0) > 1)

Require: Parameters α0 and β0
Output: Random sample x with distribution beta(α, β)

INITIALISATION
1: α← min(α0, β0)
2: β← max(α0, β0)
3: a← α + β

4: b←
√

a−2
2αβ−a

5: g← α + b−1

GENERATION
6: Generate u1, u2 ∼ U(0, 1)
7: v← b log

(
u1

1−u1

)
8: w← αev

9: z← u2
1u2

10: r ← gv− 1.3862944 . Constant is log 4
11: s← α + r− w
12: if s + 2.609438 ≥ 5z then go to 16 . Constant is 1 + log 5
13: t← log z
14: if s ≥ t then go to 16
15: if r + a log

(
a

β+w

)
< t then go to 6

16: if α = α0 then
17: return x = w

b+w
18: else
19: return x = b

b+w

The choice of k1 and k2 is covered in detail in [49].
Lemma 1 allows one to create a preliminary test for rejection, while Lemma 2 can be applied to

create preliminary tests for both acceptance and rejection. Algorithm 14 includes these tests.
In [49], a comparison of the methods proposed in different situations was made through

programming in FORTRAN and running on a CDC 7600 computer. The case where min(α, β) > 1

Mathematics 2023, 11, 4893 12 of 30

was first analysed, and the BA, BB and BN algorithms were compared, leaving aside Jöhnk’s algorithm
since it was substantially slower than the other methods in this case. In this situation, the BB algorithm
was uniformly faster than the BA algorithm, which was uniformly faster than the BN algorithm.
While Cheng argued that the speed of the BN algorithm could be improved by applying a better
normal r.v. generator, he in fact said that the BN algorithm’s times would be reduced to reach the
performance of the BA or BB algorithms when α and β were approximately equal and large. However,
Cheng pointed out two aspects showing why the BA and BB algorithms were better than the BN
algorithm. First, the performance of the BA and BB remained approximately constant for any values
of α and β, while the performance of the BN algorithm worsened when α and β were close to one
or when their values were quite different. Second, in the case where α and β varied and had to be
recalculated at each call, the BA and BB algorithms took only 5.6 µs more time per variable, while the
BN algorithm required an additional 9.9 µs. The case where min(α, β) ≤ 1 was also analysed. Here,
the BA, BC, switch (1 and 2) and Jöhnk’s algorithms were compared. None of them substantially
dominated over the others. If α and β were fixed and less than or equal to one, and if α + β ≤ 1, then
Jöhnk’s method would be the best performer, while if α + β > 1, then the BC or first switch method
were dominant. If α and β were fixed, and either of them were greater than one, then the second
switch method was slightly faster than the BC algorithm if the other parameter was small, while the
BC algorithm was slightly faster in the other cases. Here, Jöhnk’s method slowed down rapidly as α

or β increased. In the case where α and β were not fixed and were updated on each call, the Switch
methods were not as efficient, and it was Jöhnk’s method that provided better performance when
α or β was small or if α + β ≤ 1.5. Outside of this region, the BA algorithm was better if α, β ≈ 1;
otherwise, the BC algorithm was better.

Algorithm 14 BC algorithm [49] (min(α0, β0) ≤ 1)

Require: Parameters α0 and β0
Output: Random sample x with distribution beta(α, β)

INITIALISATION
1: α← max(α0, β0)
2: β← min(α0, β0)
3: a← α + β
4: b← β−1

5: δ← 1 + α− β

6: k1 ←
δ(0.25+0.75β)

18αb−14
7: k2 = 0.25 + (0.5 + 0.25δ−1)β

GENERATION
8: Generate u1, u2 ∼ U(0, 1)
9: if u1 ≥ 1

2 then go to 14

10: y← u1u2
11: z← u1y
12: if 0.25u2 + z− y ≥ k1 then go to 8
13: else go to 20
14: z← u2

1u2
15: if z ≤ 0.25 then
16: v← b log

(
u1

1−u1

)
17: w← αev

18: go to 23
19: if z ≥ k2 then go to 8
20: v← b log

(
u1

1−u1

)
21: w← αev

22: if a
[
log
(

a
β+w

)
+ v
]
− 1.3862944 < z then go to 8

23: if α = α0 then
24: return x = w

β+w
25: else
26: return x =

β
β+w

Mathematics 2023, 11, 4893 13 of 30

3.3.6. BNM Algorithm
In [50], another technique for generating beta distributions was developed based on the one

already developed in [46]. This new technique assumes that the inflection points of f (x) fall at points
of the form

x =

[
A±

(
AB

C−1

) 1
2
]

C
(10)

if these values are real numbers between 0 and 1. If there are no inflection points, then the density
is concave. If there are two inflection points, then the density is concave between these points and
convex in the rest of the space. If there is only one point, then the density is concave in the direction
of the mode and convex in the opposite direction. The mode is found in A

C when A, B > 0. For this
method, it is essential to define the following points (see [50]):

x1 = x2 −
x2(1− x2)

A− Cx2

x2 =

[

A−(AB
C−1)

1
2

]
C , if it is a real number in [0,1]

0 , in other case.

x3 =
A
C

x4 =

[

A+(AB
C−1)

1
2

]
C , if it is a real number in [0,1]

0 , in other case.

x5 = x4 −
(x4(1− x4))

A− Cx4

(11)

where x2 and x4 are the inflection points in the case where they exist, x3 is the mode and x1 and x5 are
the points at which tangents passing through points x2 and x4 intersect the X axis, respectively. In ad-
dition, this method performs a preliminary test with a minorant function b1(x) ≤ f (X) ∀x ∈ [0, 1]
defined by

b1(x) =

0 , if 0 ≤ x ≤ x1
(x−x1)
(x3−x1)

, if x1 < x ≤ x3
(x5−x)
(x5−x3)

, if x3 < x ≤ x5

0 , if x5 < x ≤ 1

(12)

For more details, see [50]. To write Algorithm 15, it is enough to define the points (Equation (11))
in Algorithm 7 and add a step between steps 5 and 6 that allows the following test to be performed:

if u exp
(
−z2

2

)
≤ b1(x), Return x.

Although Algorithm 15 is more extensive and includes numerous conditionals, the existence of
the preliminary test reduces the number of logarithmic evaluations required, which should make it
more computationally efficient.

Mathematics 2023, 11, 4893 14 of 30

Algorithm 15 BNM [50]
Require: Parameters α > 1 and β > 1
Output: Random sample x with distribution beta(α, β)

1: A← α− 1
2: B← β− 1
3: C ← A + B
4: L← C log C
5: µ← A/C

6: σ← 0.5/C
1
2

7: x2 ←

[
A−(AB

C−1)
1
2

]
R

8: if x2 not in [0, 1] or not real then x2 = 0

9: x4 ←

[
A+(AB

C−1)
1
2

]
R

10: if x4 not in [0, 1] or not real then x4 = 1
11: x1 = x2 − x2(1−x2)

A−Cx2

12: x5 = x4 −
x4(1−x4)
A−Cx4

13: x3 = µ
14: Generate z ∼ N(0, 1)
15: x ← zσ + µ
16: if x < 0 or x > 1 then go to 14
17: Generate u ∼ U(0, 1)
18: if 0 ≤ x ≤ x1 or x5 < x ≤ 1 then s← 0
19: else if x1 < x ≤ x3 then s← x−x1

x3−x1

20: else if x3 < x ≤ x5 then s← x5−x
x5−x3

21: if ue− z2/2 ≤ s then
22: return x
23: if log u > A log

(x
A
)
+ B log

(
1−x

B

)
+ L + 0.5z2 then go to 14

24: else
25: return x

3.3.7. B2P and B4P Algorithms
Similar to the A–R methods discussed in Section 3.3.3, by taking the density function of a beta

r.v. with the parameters α, β > 1 such that

f (x) =
(x

A

)A
(

1− x
B

)B
CC (13)

where A = α− 1, B = β− 1 and C = A + B, Schmeiser and Shalaby [50] developed three methods
based on the A–R method for generating samples of a beta(α, β) r.v. The first one is the BNM
algorithm, and the other two methods will be described below. Starting from the points defined in
Equation (11), this method uses a majorising piecewise function t1(x):

t1(x) =

x f (x2)

x2
, if 0 ≤ x ≤ x2

1 , if x2 < x ≤ x4
(1−x) f (x4)

1−x4
, if x4 < x ≤ 1

(14)

This method is called the 2-points technique, since t1 requires evaluating f (x) at two points:
x2 and x4. It can easily be proven that t1(x) ≥ f (x) ∀x ∈ [0, 1] [50]. For x ∈ [0, x2] or x ∈ [x4, 1],
t1 is a straight line joining two points of the function f (x), and this itself is convex, while for

Mathematics 2023, 11, 4893 15 of 30

x ∈ [x2, x4], t1(x) = 1 = f (x3) = maxx f (x), and hence t1(x) ≥ f (x). This method also employs a
minorising function:

b2(x) =

0 , if 0 ≤ x ≤ x1
(x−x1) f (x2)

x2−x1
, if x1 < x ≤ x2

f (x2) +
(x−x2)(1− f (x2))

x3−x2
, if x2 < x ≤ x3

f (x4) +
(x4−x)(1− f (x4))

x4−x3
, if x3 < x ≤ x4

(x5−x) f (x4)
x5−x4

, if x4 < x ≤ x5

0 , if x5 < x ≤ 1

(15)

It can also be proven that b2(x) ≤ f (x) ∀x ∈ [0, 1] (see [50]). For x ∈ [x2, x4], f (x) is concave, and
b2(x) represents two straight lines connecting x2 ,x3 and x4, and thus b2(x) ≤ f (x). For x ∈ [x1, x2] or
x ∈ [x4, x5], f (x) is concave, and b2(x) ≤ f (x) because b2(x) is tangent to f (x) in x2 and x4. By using
t1, s it is possible to develop Algorithm 16.

For the 4-points method, it is necessary to evaluate f (x) in x1, x2, x4 and x5 and consider the
majorising function:

t2(x) =

x f (x1)
x1

, if 0 ≤ x ≤ x1

f (x1) +
(x−x1)(f (x2)− f (x1))

x2−x1
, if x1 < x ≤ x2

1 , if x2 < x ≤ x4

f (x5) +
(x5−x)(f (x4)− f (x5))

x5−x4
, if x4 < x ≤ x5

(1−x) f (x5)
1−x5

, if x5 < x ≤ 1

(16)

The implementation of the 4-points method differs from the 2-points method in that four
rectangular regions with a probability of rejection of zero have been created, while the rest is the
same. These methods are efficient when both α and β are relatively small. However, when either
parameter is large, the majorising functions t1(x) and t2(x) do not fit particularly well, causing the
B2P and B4P algorithms to be less efficient. In [21], two algorithms were developed by replacing the
majorising function in the tails with a better-fitting exponential dominant function.

In [50] a performance comparison of the BNM, B2P, B4P, BN, BB, Jöhnk’s and ratio of gammas
(RG) algorithms was performed on a CYBER 72 computer using a FORTRAN compiler. The study
concluded that the BNM algorithm is more efficient than the BN algorithm (in a marginal runtime),
but for most parameter values, the B2P and B4P algorithms are faster, with the B4P algorithm being
less sensitive to large parameter values. For its part, the BB method was faster when the distribution
was quite skewed. Jöhnk’s method was more inefficient than the others, and the RG algorithm was
slow because it requires the generation of two gamma random variables.

Mathematics 2023, 11, 4893 16 of 30

Algorithm 16 B2P algorithm [50]
Require: Parameters α, β > 1
Output: Random sample x with distribution beta(α, β)

INITIALISATION
1: A← α− 1, B← β− 1, C ← A + B, L← C log C, x1 ← x2 ← 0, x3 ← A

C , x4 ← x5 ← 1, f2 ← f4 ← 0
2: if C ≤ 1 then go to 10

3: D ← (AB/(C− 1))
1/2

C
4: if D ≥ x3 then go to 7
5: else
6: x2 ← x3 − D, x1 ← x2 − x2(1−x2)

(A−Cx2)
, f2 ← exp (A log (x2/A) + B log ((1− x2)/B) + L)

7: if x3 + D ≥ 1 then go to 10
8: else
9: x4 ← x3 + D, x5 ← x4 − x4(1−x4)

(A−Cx4)
, f4 ← exp (A log (x4/A) + B log ((1− x4)/B) + L)

10: p1 ← x3 − x2 , p2 ← (x4 − x3) + p1, p3 ← f2 x2/2 + p2, p4 ← f4(1− x4)/2 + p3
GENERATION

11: Generate u ∼ U(0, 1)
12: u← up4
13: Generate w ∼ U(0, 1)
14: if u > p1 then go to 19
15: else
16: x ← x2 + w(x3 − x2), v← u

p1
17: if v ≤ f2 + w(1− f2) then go to 41
18: else go to 37
19: if u > p2 then go to 24
20: else
21: x ← x3 + w(x4 − x3), v← u−p1

(p2−p1)

22: if v ≤ 1− (1− f4)
w then go to 41

23: else go to 37
24: Generate w2 ∼ U(0, 1)
25: if w2 > w then w← w2

26: if u > p3 then go to 33
27: else
28: x ← wx2
29: v← u−p2

(p3−p2)
w f2

30: if x ≤ x1 then go to 37
31: else if v ≤ f2(x−x1)

(x2−x1)
then go to 41

32: else go to 37
33: x ← 1− w(1− x4)

34: v←
(

u−p3
(p4−p3)

)(
(1−x) f4
(1−x4)

)
35: if x ≥ x5 then go to 37
36: else if v ≤ f4(x5−x)

(x5−x4)
then go to 41

37: P← log(v)
38: if P ≥ −(x− x3)

2(C + C) then go to 11
39: if P > A log(x/A) + B log((1− x)/B) + L then go to 11
40: else
41: return x

3.3.8. B2PE and B4PE Algorithms
In [21,51], two extensions of the B2P and B4P algorithms were proposed—the B2PE and B4PE

algorithms—that are valid for α, β > 1. Both algorithms are similar, with B4PE being more cumber-
some but faster.

First, the new functions t1(x) and t2(x) are defined by taking the curve of an exponential for
the tails [52], and b2(x) is taken as shown in Equation (15). The generation of each variable X needed
for the B2PE algorithm consists of taking a probability pj, j = 1, 2, 3 with a region from the three
existing ones defined, generating a point (x, v) uniformly distributed over the selected region and
accepting or rejecting it, depending on whether it is above or below the t1(x) and b2(x) [21] functions.
To generate the points (x, v) in the region i, we take

x =

x2 + (x4 − x2) ∗ v , if i = 1

x2 + log(u)/λ2 , if i = 2

x4 − log(u)/λ4 , if i = 3

(17)

Mathematics 2023, 11, 4893 17 of 30

where λ2 = A/x2 − B/(1− x2), λ4 = B/(1− x4)− A/x4 and u ∼ U(0, 1). By computing − log(u), exponen-
tial values are generated for regions 2 and 3 [21]. For the v coordinate, this is generated as U(0, t1(x)),
but it is not necessary to evaluate t1(x) explicitly. For i = 1, t1(x) = 1, while for regions 2 and 3, t1(x)
involves an exponential function, but by using Schmeiser’s method [52], the exponential operation
can be eliminated. For the B4PE algorithm, t2(x) is taken. The number of regions increases to 10,
but the underlying idea is the same. The pseudo-codes of these methods are shown in Algorithms 17
and 18.

Algorithm 17 B2PE algorithm (Schmeiser and Babu [21])
Require: Parameters α, β > 1
Output: Random sample x with distribution beta(α, β)

INITIALISATION
1: A← α− 1, B← β− 1, C ← A + B, L← C log C, x2 ← f2 ← f4 ← 0, x3 ← A

C , x4 ← 1
2: if C ≤ 1 then go to 10

3: D ← (AB/(C− 1))
1/2

C
4: if D ≥ x3 then go to 7
5: else
6: x2 ← x3 − D, λ2 ← A/x2 − B/(1− x2), f2 ← exp (A log (x2/A) + B log ((1− x2)/B) + L)
7: if x3 + D ≥ 1 then go to 10
8: else
9: x4 ← x3 + D, λ4 ← B/(1− x4)− A/x4, f4 ← exp (A log (x4/A) + B log ((1− x4)/B) + L)

10: p1 ← x4 − x2
11: p2 ← f2/λ2 + p1
12: p3 ← f4/λ4 + p2

GENERATION
13: Generate u ∼ U(0, 1)
14: u← up3
15: Generate v ∼ U(0, 1)
16: if u > p1 then go to 22
17: else . Region 1
18: x ← x2 + u
19: if x < x3 and v < f2 +

(x−x2)(1− f2)
(x3−x2)

then go to 40

20: else if x ≥ x3 and v < f4 +
(x4−x)(1− f4)

(x4−x3)
then go to 40

21: else go to 36
22: if u > p2 then go to 30
23: else . Region 2
24: u← (u−p1)

(p2−p1)

25: x ← x2 +
log(u)

λ2

26: if v < λ2(x−x2)+1
u then go to 40

27: if x ≤ 0 then go to 13
28: else
29: v← v f2u then go to 36
30: u← (u−p2)

(p3−p2)
. Region 3

31: x ← x4 − log(u)
λ4

32: if v < λ4(x4−x)+1
u then go to 40

33: if x ≥ 1 then go to 13
34: else
35: v← v f4u
36: P← log(v)
37: if P > −(x− x3)

2(C + C) then go to 13
38: if P > A log(x/A) + B log((1− x)/B) + L then go to 13
39: else
40: return x

Mathematics 2023, 11, 4893 18 of 30

Algorithm 18 B4PE algorithm (Schmeiser and Babu [21])
Require: Parameters α, β > 1
Output: Random sample x with distribution beta(α, β)

INITIALIZATION
1: A← α− 1, B← β− 1, C ← A + B, L← C log C, x1 ← x2 ← 0, x3 ← A

C , x4 ← x5 ← 1, f1 ← f2 ← f4 ← f5 ←
0

2: if C ≤ 1 then go to 18

3: D ← (AB/(C− 1))
1/2

C
4: if D ≥ x3 then go to 11
5: else
6: x2 ← x3 − D
7: x1 ← x2 − x2(1−x2)

(A−Cx2)

8: λ1 ← A
x1
− B

(1−x1)

9: f1 ← exp (A log (x1/A) + B log ((1− x1)/B) + L)
10: f2 ← exp (A log (x2/A) + B log ((1− x2)/B) + L)
11: if x3 + D ≥ 1 then go to 18
12: else
13: x4 ← x3 + D
14: x5 ← x4 − x4(1−x4)

(A−Cx4)

15: λ5 ← B
(1−x5)

− A
x5

16: f4 ← exp (A log (x4/A) + B log ((1− x4)/B) + L)
17: f5 ← exp (A log (x5/A) + B log ((1− x5)/B) + L)
18: p1 ← f2(x3 − x2)
19: p2 ← f4(x4 − x3) + p1
20: p3 ← f1(x2 − x1) + p2
21: p4 ← f5(x5 − x4) + p3
22: p5 ← (1− f2)(x3 − x2) + p4
23: p6 ← (1− f4)(x4 − x3) + p5
24: p7 ← (f2 − f1)(x2 − x1)/2 + p6
25: p8 ← (f4 − f5)(x5 − x4)/2 + p7

26: p9 ← f1
λ1

+ p8

27: p10 ← f5
λ5

+ p9

GENERATION
28: Generate u ∼ U(0, 1)
29: u← up10
30: if u > p4 then go to 42
31: else
32: if u > p1 then go to 35
33: else . Region 1
34: return x ← x2 + u/f2

35: if u > p2 then go to 38
36: else . Region 2
37: return x ← x3 + (u− p1)/f4

38: if u > p3 then go to 41
39: else . Region 3
40: return x ← x1 + (u− p2)/f1

41: return x ← x4 + (u− p3)/f5 . Region 4
42: Generate w ∼ U(0, 1)
43: if u > p5 then go to 49
44: else . Region 5
45: x ← x2 + w(x3 − x2)

46: if (u−p4)
(p5−p4)

≤ w then go to 86
47: else
48: v← f2 +

u−p4
(x3−x2)

then go to 82

49: if u > p6 then go to 55
50: else . Region 6
51: x ← x3 + w(x4 − x3)

52: if (p6−u)
(p6−p5)

≥ w then go to 86
53: else
54: v← f4 +

u−p5
(x4−x3)

then go to 82

55: if u > p8 then go to 69
56: else . Region 7
57: Generate w2 ∼ U(0, 1)
58: if w2 > w then w← w2

59: if u > p7 then go to 65
60: else

Mathematics 2023, 11, 4893 19 of 30

61: x ← x1 + w(x2 − x1)

62: v← f1 +
2w(u−p6)
(x2−x1)

63: if v < f2w then go to 86
64: else go to 82
65: x ← x5 − w(x5 − x4) . Region 8
66: v← f5 +

2w(u−p7)
(x5−x4)

67: if v ≤ f4w then go to 86
68: else go to 82
69: if u > p9 then go to 76 . Region 9
70: u← p9−u

(p9−p8)

71: x ← x1 +
log(u)

λ1
72: if x ≤ 0 then go to 28
73: if w ≤ λ1(x−x1)+1

u then go to 86
74: else
75: v← w f1u then go to 82
76: u← p10−u

(p10−p9)
. Region 10

77: x ← x5 − log(u)
λ5

78: if x ≥ 1 then go to 28
79: if w ≤ λ5(x5−x)+1

u then go to 86
80: else
81: v← w f5u
82: P← log(v)
83: if P > −(x− x3)

2(C + C) then go to 28
84: if P > A log(x/A) + B log((1− x)/B) + L then go to 28
85: else
86: return x

In [21], a comparative study of the B2P, B4P, B2PE, B4PE and BB algorithms on a CDC CYBER
72 computer was carried out by programming them in FORTRAN. As a result, the B2PE and B4PE
algorithms dominated the B2P and B4P algorithms, respectively. Furthermore, both the B2PE and
B4PE algorithms dominated the BB algorithm, with the B4PE algorithm being approximately twice as
fast as the BB algorithm.

3.4. Other Methods of Generation
There are other methods for generating beta random variables. Some of them are based on

certain statistical properties of random variables, order statistics, stratified rejection methods or
stochastic search procedures, among others.

The method based on gamma random variables is one of the most used methods. It is based on
the following result (see [32]). If Y and Z are two independent standard gamma random variables
with parameters α and β, respectively, then X = Y/(Y + Z) ∼ beta(α, β). Given this property, it is
possible to state that any existing method for simulating gamma random variables can be adopted
and used to generate a beta distribution. Algorithm 19 shows this method.

Algorithm 19 Method for generating a beta r.v. based on a gamma r.v. [37]

Require: Parameters α y β
Output: R.v. X ∼ beta(α, β)

Generate Y ∼ Gamma(α)
Generate Z ∼ Gamma(β)
X ← Y

Y+Z
return X

Another relational property of the beta r.v. allows generating samples of this distribution from
the order statistics of a sample of a U(0, 1) r.v. as explained in [53]. If 0 < U(1) < · · · < U(α+β−1) < 1
is an ordered sample of a size (α + β− 1) from a U(0, 1) distribution, then U(α) ∼ beta(α, β). Thus,
a sample from a beta(α, β) r.v. with α, β ∈ N can be generated by taking the αth smallest value from a
uniform sample of a size (α + β− 1).

Algorithm 20 requires generating a whole sample from a uniform distribution to obtain a single
value of the desired beta distribution, which is computationally cumbersome, especially if large
parameters are considered. In addition, standard ordering of the sample to find the the smallest αth

Mathematics 2023, 11, 4893 20 of 30

value may not be too difficult for small parameters, but when taking large α or β values, the cost rises.
As a solution to this problem, other faster sorting algorithms such as SELECT [54] or SORT [55] can
be used as a solution to this problem.

Algorithm 20 Method based on order statistics [32]
Require: Parameters α and β
Output: Random sample x of a beta(α, β) r.v.

Generate a sample of size (α + β− 1) from a U(0, 1) r.v.
x ← αth order statistics
return x

In relation to stratified rejection methods, the B00, B01 and B11 algorithms developed in [56],
in which envelopes and exponentials are applied to slices in the centres and tails of the desired beta
distribution, respectively, stand out. Some improvements on the traditional A–R algorithms are
the BPRS and BPRB algorithms developed in [57], which improve the acceptance and rejection at
the centre of the beta r.v. for simulation using the idea of patch rejection. When α, β < 1, the B00
algorithm has the fastest computational generation time among all compared algorithms. When
α < 1 < β or β < 1 < α , the B01 algorithm is the fastest. When α, β > 1, if one parameter is close
to one and the other is large, then the B4PE algorithm has the shortest computer generation time;
otherwise, the BPRS algorithm has the shortest computer generation time.

Another procedure is the stochastic search method developed in [58] that asymptotically gener-
ates beta random variables. This method has some drawbacks and was studied and improved upon
in [59] (MK algorithm). In this paper, the authors indicate the parameter values of the beta r.v. that
allow it to be generated with Kennedy’s algorithm and perform a study on the optimal parameter
selection. The MK algorithm proposed is faster than all the compared algorithms for generating the
beta r.v. when α, β < 1, and 1.2 < α + β < 2. In [60], a universal generator is proposed for absolute-
continuous and integer-valued random variables. This algorithm is based on the previous work [61]
and is a generalization of the A-R method. There are other recent techniques, which also include
analysis through neutrosophic statistics (see [62]), analysing the generation of beta distributions using
the neutrosophic acceptance–rejection method (see [63]).

4. Computational Development
This section compares the previously described methods to find which one is best for simulating

beta random variables. The computational results were derived from the implementation of the
different algorithms in R, the generation of 5 beta random samples of a size of 10,000 for each of
them and the calculation of the average execution times of these for a wide range of parameters
on a laptop with an Intel(R) Core(TM) i5-7200U CPU @ 2.50 GHz (2.71 GHz) and 8 GB of RAM.
The choices for the sample sizes and parameters were in relation to those made by the authors of
the algorithms themselves in their comparisons [46,47,49,50]. The uniform pseudo-random numbers
were generated by means of the function RUNIF [64]. In turn, the random samples of the normal,
gamma and exponential distributions needed in some of the algorithms were also generated by their
respective functions already existing in R: RNORM, RGAMMA and REXP [64]. The tables that stored the
execution times always took α ≤ β. For the opposite case, it was enough to generate 1− X instead of
X [37], and therefore the times hardly varied.

To begin with, for the algorithm based on the order statistics [53], we performed two different
sorts of uniform random sampling: the first using the SELECT algorithm [54] and the second using
the SORT algorithm [55], which is included in R (the command SORT). By looking at Table 1, it can
be noted that when using SORT, the algorithm was not all that sensitive to the value taken by the
parameters, the execution time remained between 400 and 600 ms at all times, unlike the algorithm
with SELECT sorting, which was highly volatile. Using the SELECT [54] algorithm to sort the uniform
random sample was quite interesting when the parameters α and β were small; its execution times
were much better than with SORT when α or β did not take values greater than 10. Otherwise,
the time needed to simulate a beta r.v. skyrocketed, taking up to 4 s for a beta(100, 100). This is why it
is not recommended to use SELECT sorting for large parameters.

In Table 1, we can also observe the execution times of Jöhnk’s algorithm [41] and the algorithm
based on the gamma r.v. [32] for the parameters α, β ≥ 1, while in Table 2, the times for these same
algorithms but with α < 1 and any β value are collected. In Tables 3 and 4 we show the average
number of iterations required for the simulations in BN, Cheng’s and Jöhnk’s algorithms and Cheng’s,
Jöhnk’s and Switch algorithms respectively. When analysing the times used by Jöhnk’s algorithm,

Mathematics 2023, 11, 4893 21 of 30

it is necessary to restrict the use of this algorithm to small parameters. For α, β = 5, the algorithm
already needed more than 3 s to generate the beta r.v., needing an average of 252 iterations as shown
in Table 3. Similarly, if we tried to simulate a beta(50, 100), an average number of iterations to the
order of 40 was reached. However, neither this nor the algorithms based on order statistics were
comparable to the method based on the gamma r.v. This method was faster for any type of parameter;
it took no more than 5 ms to simulate any of the beta random variables studied. Moreover, it was
10 times more efficient than the best case of either of the other two methods. Therefore, if the objective
is to simulate a beta r.v. through one of the methods based on relational properties, then the algorithm
based on the gamma r.v. is recommended, as it was the fastest and took advantage of the function
RGAMMA in R [64], which allowed us to generate random samples. Gamma is easily programmable,
as it is only necessary to generate two samples and operate between them.

Next, we will compare the inversion algorithms: the bisection algorithm [32] based on the
root-finding algorithms and the NINIGL algorithm [31]. The execution times for these methods
are collected in Tables 5 and 6. Looking at the times for the bisection method, it is clear that this
algorithm was slow, as we predicted, but it is interesting to note the stability of its times. Regardless
of the parameters taken, it took around 0.7 or 0.8 s to simulate a beta r.v. On the other hand, we have
the NINIGL algorithm. When studying the times of this algorithm, it is highlighted that, in spite
of the speed with which it generated a beta r.v. of any parameters, when α or β were less than 0.5,
the algorithm slowed down quite a lot and became invalid when both parameters were less than
0.5. This is because when a beta distribution takes on small parameters, its density reaches values
close to zero, and this causes numerical problems in the algorithm. However, in spite of this, this
method was clearly faster than the bisection method. In addition, this algorithm was programmed in
the RUNURAN library, which is an adaptation of the C library of Universal Non-Uniform Random
Number Generators UNU.RAN) under the name Polynomial Interpolation of Inverse CDF (PINV),
which makes it more attractive for use in simulating beta random variables.

Table 1. Execution time (in milliseconds) for relational property-based algorithms (α, β ≥ 1).

Parameters Methods

Alpha Beta Gamma SELECT SORT Jöhnk

1

1 3.00 39.29 439.84 91.16
2 3.18 103.73 433.88 135.44
5 2.80 166.32 445.73 282.73
10 2.99 244.14 441.03 488.30
50 2.59 646.80 476.25 2243.62

100 2.59 1257.66 512.18 *

2

2 3.20 158.97 431.96 272.88
5 2.59 222.41 449.40 938.62
10 2.79 296.78 435.65 2761.89
50 2.59 710.20 475.56 *

100 2.19 1334.46 517.91 *

5

5 3.19 306.19 435.85 *
10 2.20 367.11 445.19 *
50 2.19 816.16 478.66 *

100 2.39 1513.51 525.20 *

10
10 2.19 475.53 466.57 *
50 2.00 958.83 478.22 *

100 2.40 1736.97 521.37 *

50 50 1.78 1955.14 511.28 *
100 1.80 2842.27 553.92 *

100 100 2.19 4028.12 587.14 *
* Excessive time.

Mathematics 2023, 11, 4893 22 of 30

Table 2. Execution time (in milliseconds) for relational property-based algorithms (α < 1).

Parameters Methods Parameters Methods

Alpha Beta Gamma Jöhnk Alpha Beta Gamma Jöhnk

0.1

0.1 4.38 47.88

0.5

0.5 4.19 57.45
0.3 4.80 50.87 0.9 4.39 71.59
0.5 3.99 52.57 1 4.79 76.99
0.9 4.18 56.96 2 3.79 97.68
1 2.99 55.85 5 3.18 119.79
2 3.20 55.65 10 3.19 165.12
5 2.99 61.04 50 3.20 365.27
10 2.79 63.72 100 3.19 510.84
50 2.60 72.91

100 2.79 84.88

0.3

0.3 3.80 69.78

0.9

0.9 4.18 108.61
0.5 4.09 56.85 1 3.59 104.32
0.9 4.38 61.88 2 3.60 126.26
1 3.60 59.94 5 3.39 245.40
2 3.39 71.03 10 3.38 421.22
5 2.99 86.98 50 2.99 1578.84
10 2.99 108.32 100 3.19 2835.19
50 3.19 218.72

100 2.99 220.33

Table 3. Average number of iterations required (α, β ≥ 1).

Parameters Methods

Alpha Beta BN * Cheng Jöhnk

1

1 28.04 1 2.00
2 2.489 1.185 3.00
5 3.111 1.34 6.00

10 4.148 1.402 11.00
50 8.887 1.457 51.00

100 - 1.464 101.00

2

2 1.329 1.061 6.00
5 1.377 1.13 21.00

10 1.689 1.18 66.00
50 3.359 1.234 1326.00

100 5.025 1.242 5151.00

5

5 1.09 1.101 252.00
10 1.139 1.117 3003.00
50 1.889 1.155 3.5 × 106

100 2.588 1.162 9.7 × 107

10
10 1.041 1.114 1.8 × 105

50 1.391 1.134 7.5 × 1010

100 1.809 1.141 4.7 × 1013

50 50 1.126 1.0 × 1029

100 2.0 × 1040

* Take 1.001 instead 1 for α and β.

Thirdly, Tables 7 and 8 collect the time (in milliseconds) that was necessary to generate beta
random variables from what we called specific methods. On the one hand, Table 7 stores the times of
those methods applicable when both parameters were greater than one (i.e., the A–R algorithms from
the density of a normal distribution [46], the BN, BNM and symmetric case BS algorithms [50], the 2-
points B2P algorithm [50] together with its version using the tail of the exponential B2PE algorithm
and the extension to the 4-points B4PE algorithm [21] and the BA and BB algorithms [49]). On the
other hand, the execution times of the algorithms applicable when at least one of the parameters

Mathematics 2023, 11, 4893 23 of 30

was less than one (i.e., the “switching algorithm” [47] (SW1 and SW2) and Cheng’s BA and BC
algorithms [49]) are stored in Table 8. In addition, the runtimes of the function of R that generated
random samples from a beta distribution RBETA are also collected in both tables.

Table 4. Average number of iterations required (α < 1).

Parameters Methods Parameters Methods

Alpha Beta Cheng Jöhnk Switch * Alpha Beta Cheng Jöhnk Switch *

0.1

0.1 1.77 1.01 1.77

0.5

0.5 1.27 1.27 1.27
0.3 2.49 1.04 1.53 0.9 1.50 1.46 1.09
0.5 2.70 1.06 1.35 1 1.54 1.50 1.15
0.9 2.84 1.09 1.09 2 1.72 1.88 1.21
1 2.86 1.10 1.03 5 1.84 2.71 1.25
2 2.94 1.16 1.05 10 1.89 3.70 1.26
5 2.99 1.25 1.07 50 1.93 8.04 1.28

10 3.01 1.33 1.08 100 1.93 11.33 1.28
50 3.02 1.56 1.09
100 3.02 1.67 1.09

0.3

0.3 1.46 1.11 1.46

0.9

0.9 1.04 1.81 1.04
0.5 1.72 1.17 1.34 1 1.07 1.90 1.16
0.9 1.95 1.28 1.10 2 1.26 2.76 1.17
1 1.98 1.30 1.09 5 1.41 5.18 1.19
2 2.13 1.50 1.14 10 1.47 8.96 1.19
5 2.23 1.87 1.18 50 1.52 35.76 1.20

10 2.27 2.27 1.20 100 1.53 66.16 1.20
50 2.29 3.62 1.21
100 2.30 4.44 1.21

* Take β = 1.001 instead of β = 1.

Table 5. Execution times (in milliseconds) for inversion algorithms (α, β ≥ 1).

Parameters Methods

Alpha Beta Bisection NINIGL

1

1 687.40 0.60
2 760.75 1.40
5 761.26 1.00

10 771.29 1.20
50 765.05 1.00

100 738.42 1.40

2

2 732.41 2.59
5 803.14 2.39

10 821.89 2.62
50 838.48 2.39

100 771.99 2.19

5

5 835.62 1.60
10 819.31 1.20
50 802.67 1.60

100 795.96 1.60

10
10 792.23 1.00
50 794.36 1.59

100 810.24 1.60

50 50 756.47 1.20
100 876.26 1.40

100 100 876.65 1.39

Mathematics 2023, 11, 4893 24 of 30

Table 6. Execution times (in milliseconds) for inversion algorithms (α < 1).

Parameters Methods Parameters Methods

Alpha Beta Bisection NINIGL Alpha Beta Bisection NINIGL

0.1

0.1 743.93 -

0.5

0.5 739.83 3.39
0.3 755.05 - 0.9 795.65 3.99
0.5 753.33 44.89 1 744.47 3.06
0.9 820.23 43.78 2 758.80 4.39
1 727.21 41.89 5 756.77 4.59
2 842.61 38.78 10 782.66 4.79
5 834.20 39.70 50 747.51 4.79
10 850.57 37.70 100 745.92 4.29
50 805.91 37.10

100 813.52 37.10

0.3

0.3 759.32 -

0.9

0.9 738.04 3.39
0.5 713.15 11.57 1 704.67 2.79
0.9 714.34 14.76 2 790.74 3.59
1 848.19 13.36 5 817.37 3.39
2 783.48 12.77 10 827.93 3.10
5 858.25 11.37 50 807.46 3.59
10 848.70 10.97 100 813.41 2.99
50 832.72 12.17

100 798.93 11.17

Table 7. Execution times (in milliseconds) for specific algorithms (α, β ≥ 1).

Parameters Methods

Alpha Beta B2P * B2PE * B4PE * BA BB rbeta BN * BNM * BS *

1

1 138.63 63.63 58.24 95.84 123.27 2.00 671.40 - 735.03
2 264.49 113.70 107.12 111.30 140.42 2.19 107.11 126.67
5 378.99 77.59 59.83 123.48 147.61 2.59 144.81 169.95

10 721.07 69.22 59.64 140.02 168.14 2.60 185.90 227.98
50 3392.54 64.83 56.45 132.25 157.98 2.59 458.77 499.47

100 6830.86 64.02 59.45 133.24 156.58 2.59 555.32 700.73

2

2 208.54 82.78 79.38 100.54 122.87 1.99 79.98 91.15 58.24
5 187.99 75.40 60.84 105.71 125.46 2.00 79.00 106.72

10 287.77 75.40 60.44 110.31 132.45 2.19 92.35 169.94
50 1024.27 75.41 57.84 115.29 134.64 2.39 163.76 263.10

100 2094.05 77.39 66.42 115.70 134.45 2.19 223.61 334.71

5

5 175.33 78.99 48.08 103.92 128.05 2.19 73.00 99.13 49.67
10 203.26 67.63 47.87 106.31 125.47 2.00 75.80 98.34
50 619.75 70.21 49.87 107.31 126.26 2.19 113.50 169.15

100 1065.74 69.22 51.46 111.90 132.45 1.99 148.80 230.98

10

10 210.44 68.21 48.27 105.52 130.65 2.20 70.30 76.20 45.08
50 441.21 70.81 49.07 109.30 123.87 1.99 92.55 108.71

100 745.02 73.00 49.06 106.12 126.27 2.19 125.07 147.80

50
50 391.35 66.23 46.88 107.11 128.25 2.59 65.83 72.21 45.07

100 492.49 67.81 45.67 106.32 128.06 2.39 72.30 81.38

100 100 515.02 66.62 49.07 105.32 136.04 2.39 70.60 75.20 45.48

* Take α = 1.001 instead of α = 1 and β = 1.001 instead of β = 1.

Mathematics 2023, 11, 4893 25 of 30

Table 8. Execution times (in milliseconds) for specific algorithms (α < 1).

Parameters Methods

Alpha Beta BA BC rbeta SW1 * SW2

0.1

0.1 166.39 196.48 3.59 112.49
0.3 219.61 229.19 3.19 97.94
0.5 242.16 237.17 2.79 76.80
0.9 239.15 255.32 2.99 68.41
1 257.91 246.14 2.99 63.63
2 270.68 244.35 3.19 68.42
5 255.17 248.34 2.39 70.82

10 254.53 246.14 2.59 66.62
50 261.70 246.14 2.59 69.41
100 253.52 247.14 2.59 75.60

0.3

0.3 142.62 164.56 2.79 89.17
0.5 153.19 179.12 2.39 85.76
0.9 169.95 203.65 2.79 68.02
1 173.73 191.09 2.59 63.23
2 185.50 202.46 2.79 69.01
5 192.09 207.84 2.39 71.81

10 192.08 206.05 2.59 73.44
50 196.27 208.44 2.59 74.99
100 199.07 210.04 2.39 75.60

0.5

0.5 118.89 153.99 2.39 76.20
0.9 135.03 162.76 2.59 64.23
1 139.83 167.55 2.59 70.41
2 163.56 179.12 2.60 72.40
5 161.56 198.47 2.79 75.80

10 166.16 188.89 2.59 77.20
50 168.56 189.49 2.58 77.39
100 177.92 191.69 2.59 78.39

0.9

0.9 99.54 129.65 2.19 67.42
1 101.92 135.64 2.20 73.80
2 118.48 146.21 2.39 72.21
5 128.86 160.76 2.40 74.20

10 132.45 165.36 2.79 73.61
50 137.43 169.75 2.40 75.79
100 135.84 174.13 2.59 75.00

* Take α = 1.001 instead of α = 1 and β = 1.001 instead of β = 1.

If we begin by comparing Cheng’s algorithms, it should be noted that although the BB and BC
algorithms are supposed to be improvements upon the BA algorithm by reducing the number of
logarithmic evaluations required, in our codes, the time spent on these evaluations was less than
the time required to run the additional tests of the BB and BC algorithms, and therefore, the BA
algorithm was uniformly faster than the other two. In addition, since it does not have the additional
tests, it is simpler to code. When contrasting this algorithm with the “switching algorithm” of
Atkinson and Whittaker [47] either when both parameters were less than one (SW2) or when only
one was (SW1), we see that Atkinson and Whittaker’s algorithm was faster than the BA algorithm
for all parameters where both algorithms were valid. Furthermore, although the average number
of iterations required when simulating symmetric beta random variables was the same, in general,
Atkinson and Whittaker’s algorithm [47] required fewer iterations, as shown in Table 4. It is also
interesting to note the behaviour of the SW2 algorithm which, as the beta distribution became more
asymmetric, became more efficient. The SW1 version, on the other hand, did not follow this pattern.
Another algorithm that followed a pattern, even if it was the opposite of the SW2 algorithm’s, was
the 2-points B2P [50] algorithm. This algorithm became worse as some of the parameters took on
larger values because the major function did not fit well in the tails, and it took almost 7 s to simulate
a beta(1, 100) r.v. Looking at Table 7 proves that, indeed, the supposed improvement of the 2-points
algorithm proposed by Schmeiser and Babu, the B2PE algorithm [21], which uses exponentials to
fit the majorising function better in the tails of the beta distribution, behaved as such. The B2PE

Mathematics 2023, 11, 4893 26 of 30

method is noteworthy for its constancy; the times required to simulate a beta r.v. were generally
between 60 and 70 ms, which is very different from the behaviour of the B2P algorithm. However, this
constancy of the B2PE method was also present in the 4-points version (B4PE) [21]. Between these two
algorithms, it is complicated to establish which is the best. The B4PE algorithm was faster than the
B2PE one, as shown in Table 7. However, the difference was minimal, not exceeding 30 ms, and the
B4PE algorithm was more extensive at the time of programming. Therefore, this decision is left to
the user’s choice. Regardless of this choice, the adapted BS algorithm of Ahrens and Dieter [46] was
faster and simpler than the previous two, but it is only valid for symmetric cases where α = β and
the original BN algorithm [46], applicable for any beta r.v. with parameters greater than one, was not
as efficient. Moreover, the supposed improvement of the BN algorithm proposed by Schmeiser and
Shalaby (BNM) [50] was not computationally so. The computation of the x1, . . . , x5 points and the
additional step to evaluate the minorant function were more time-consuming than the evaluations of
the original method they were trying to avoid. One remarkable thing about these three algorithms is
how little efficiency they had for α = β = 1.001; the BNM algorithm could not be applied directly,
and the times needed for the BN and BS algorithms were far from those needed for the rest of the
parameters. The reason for this behaviour is that for these parameters, it took around 28 iterations to
generate a sample of the beta r.v., as shown in Table 3. However, the best option for simulating a beta
r.v. among the algorithms present in Tables 7 and 8 was to use RBETA. When both parameters were
greater than one, this function was about 25 times faster than those considered thus far to be more
efficient. For the B2PE and B4PE or BS algorithms in the symmetric case and, similarly, when one of
the parameters was less than one, the execution speed was at least 20 times faster than that of the
“switching algorithm” (SW1 and SW2). The most interesting thing about RBETA is that, according to
the documentation of R [64], this function follows the methods of Cheng [49], and yet it is significantly
more efficient than the algorithms of Cheng which we programmed (BA, BB and BC). When taking
this into account and that, for the tables with the rest of the methods, the algorithms that stood out
for their speed could also be found implemented in R (NINIGL) or only needed to perform small
transformations from R functions (algorithms based on gamma random variables), it can be stated
that the best options for simulating a beta r.v. are already implemented in R.

Finally, we can still compare the three most efficient algorithms (gamma, NINIGL and RBETA)
to obtain the best one. To accomplish this, Tables 9 and 10 collect the average execution times of
these algorithms. On the one hand, when one of the parameters was less than one, it can clearly
be observed that RBETA is the best choice; the execution times required for the gamma r.v.-based
algorithm did not differ much from those required by RBETA, but they were slower, and the algorithm
requires some programming. The NINIGL algorithm suffered a lot with small parameters and did not
become a good choice in this situation. On the other hand, when both parameters were higher than
one, the three algorithms were more in tune. While all three were efficient, the NINIGL algorithm
stood out, in general, as the fastest one. Therefore, for each of the two situations, depending on the
values taken by the parameters, the best options are those already mentioned. However, if we want
an efficient algorithm for any parameter, then the best option for simulating beta random variables is
to use RBETA. However, if we want to generate beta random samples through the implementation of
any of the algorithms other than those already present in R, when reviewing the tables that collected
the average execution times, the best option is the B4PE or B2PE algorithm if both parameters are
greater than one, SW1 and SW2 algorithms if at least one parameter is less than one and the BA
algorithm in case we are looking for one that is valid for any parameter.

Mathematics 2023, 11, 4893 27 of 30

Table 9. Execution times (in milliseconds) for algorithms implemented in R (α, β ≥ 1).

Parameters Methods

Alpha Beta Gamma NINIGL RBETA

1

1 3.00 0.60 2.00
2 3.18 1.40 2.19
5 2.80 1.00 2.59
10 2.99 1.20 2.60
50 2.59 1.00 2.59
100 2.59 1.40 2.59

2

2 3.20 2.59 1.99
5 2.59 2.39 2.00
10 2.79 2.62 2.19
50 2.59 2.39 2.39
100 2.19 2.19 2.19

5
5 3.19 1.60 2.19
10 2.20 1.20 2.00
50 2.19 1.60 2.19
100 2.39 1.60 1.99

10
10 2.19 1.00 2.20
50 2.00 1.59 1.99
100 2.40 1.60 2.19

50 50 1.78 1.20 2.59
100 1.80 1.40 2.39

100 100 2.19 1.39 2.39

Table 10. Execution times (in milliseconds) for algorithms implemented in R (α < 1).

Parameters Methods

Alpha Beta Gamma NINIGL RBETA

0.1

0.1 4.38 - 3.59
0.3 4.80 - 3.19
0.5 3.99 44.89 2.79
0.9 4.18 43.78 2.99
1 2.99 41.89 2.99
2 3.20 38.78 3.19
5 2.99 39.70 2.39

10 2.79 37.70 2.59
50 2.60 37.10 2.59
100 2.79 37.10 2.59

0.3

0.3 3.80 - 2.79
0.5 4.09 11.57 2.39
0.9 4.38 14.76 2.79
1 3.60 13.36 2.59
2 3.39 12.77 2.79
5 2.99 11.37 2.39

10 2.99 10.97 2.59
50 3.19 12.17 2.59
100 2.99 11.17 2.39

0.5

0.5 4.19 3.39 2.39
0.9 4.39 3.99 2.59
1 4.79 3.06 2.59
2 3.79 4.39 2.60
5 3.18 4.59 2.79

10 3.19 4.79 2.59
50 3.20 4.79 2.58
100 3.19 4.29 2.59

0.9

0.9 4.18 3.39 2.19
1 3.59 2.79 2.20
2 3.60 3.59 2.39
5 3.39 3.39 2.40

10 3.38 3.10 2.79
50 2.99 3.59 2.40
100 3.19 2.99 2.59

Mathematics 2023, 11, 4893 28 of 30

5. Conclusions
There are currently many high-speed methods capable of simulating beta random variables,

but more are still being developed in order to find the fastest, simplest, and most accurate algorithm.
The main objective of this work was to analyse in detail the statistical/mathematical and

computational aspects of the generation of the beta random variable and to perform an empirical
analysis covering the different generation scenarios. After studying the generation of beta random
variables and their implementation in R, it has been concluded that the most efficient way to obtain
samples of this type is to use algorithms that are already present in R or that only require a simple
transformation. Thus, it is established that the function RBETA of R is the most appropriate option for
any type of parameter, especially if any of them are less than one, ahead of the NINIGL algorithm [31],
which stands out especially when both parameters are greater than one. In case the reader’s objective
is to use an algorithm without resorting to R’s own algorithms, we recommend implementing
Schmeiser and Babu’s B4PE or B2PE algorithms [21]. If we only want to simulate beta random
variables of parameters greater than one, then the so-called “switching algorithm” (SW1 and SW2) by
Atkinson and Whittaker [47] is recommended, as well as if any of the parameters are less than one.
Otherwise, the BA algorithm by Cheng [49] is recommended if we want one that is valid for any type
of parameter.

However, this work only includes the analysis in R, and through the results presented by
the authors of certain algorithms, it was observed that they do not behave in the same way in
other languages.

Author Contributions: Conceptualization, E.A.L. and C.G.; methodology, E.A.L. and C.G.; software,
E.A.L. and C.G.; validation, E.A.L. and C.G.; formal analysis, E.A.L. and C.G.; investigation, E.A.L.
and C.G.; resources, E.A.L. and C.G.; data curation, E.A.L. and C.G.; writing—original draft prepa-
ration, E.A.L. and C.G.; writing—review and editing, E.A.L. and C.G.; visualization, E.A.L. and
C.G.; supervision, E.A.L. and C.G. All authors have read and agreed to the published version of the
manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: We thank the Editorial Office for their support in the dissemination of this work.
We also thank the reviewers for their recommendations to improve the final version of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Thomas, D.B.; Luk, W.; Leong, P.H.W.; Villasenor, J.D. Gaussian Random Number Generators. ACM Computing Surv. 2007,

39, 11–es. [CrossRef]
2. Malik, J.S.; Hemani, A. Gaussian Random Number Generation: A Survey on Hardware Architectures. ACM Comput. Surv. 2016,

49, 1–37. [CrossRef]
3. Maatouk, H.; Bay, X. A new rejection sampling method for truncated multivariate Gaussian random ariables restricted to convex

sets. In Mathematics in Monte Carlo and Quasi-Monte Carlo Methods; Springer: Berlin/Heidelberg, Germany, 2016; pp. 521–530.
4. Morán-Vásquez, R.; Zarrazola, E.; Nagar, D.K. Some Theoretical and Computational Aspects of the Truncated Multivariate

Skew-Normal/Independent Distributions. Mathematics 2023, 11, 3579. [CrossRef]
5. Almaraz Luengo, E. Gamma Pseudo Random Number Generators. ACM Comput. Surv. 2023, 55, 1–33. [CrossRef]
6. Rubinstein, R.Y.; Kroese, D.P. Simulation and the Monte Carlo Method, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016.
7. Altiok, T.; Melamed, B. Simulation Modeling and Analysis with ARENA; Elsevier Science & Technology: New York, NY, USA, 2007.
8. Zhu, S.; Deng, X.; Zhang, W.; Zhu, C. Construction of a New 2D Hyperchaotic Map with Application in Efficient Pseudo-Random

Number Generator Design and Color Image Encryption. Mathematics 2023, 11, 3171. [CrossRef]
9. Bagdasar, O.; Chen, M.; Drăgan, V.; Ivanov, I.G.; Popa, I.L. On Horadam Sequences with Dense Orbits and Pseudo-Random

Number Generators. Mathematics 2023, 11, 1244. [CrossRef]
10. Mahalingam, H.; Rethinam, S.; Janakiraman, S.; Rengarajan, A. Non-Identical Inverter Rings as an Entropy Source: NIST-90B-

Verified TRNG Architecture on FPGAs for IoT Device Integrity. Mathematics 2023, 11, 1049. [CrossRef]
11. Ridley, D.; Ngnepieba, P. Antithetic Power Transformation in Monte Carlo Simulation: Correcting Hidden Errors in the Response

Variable. Mathematics 2023, 11, 2097. [CrossRef]
12. Almaraz Luengo, E. A brief and understandable guide to pseudo-random number generators and specific models for security.

Stat. Surv. 2022, 16, 137–181. [CrossRef]

http://doi.org/10.1145/1287620.1287622
http://dx.doi.org/10.1145/2980052
http://dx.doi.org/10.3390/math11163579
http://dx.doi.org/10.1145/3527157
http://dx.doi.org/10.3390/math11143171
http://dx.doi.org/10.3390/math11051244
http://dx.doi.org/10.3390/math11041049
http://dx.doi.org/10.3390/math11092097
http://dx.doi.org/10.1214/22-SS136

Mathematics 2023, 11, 4893 29 of 30

13. Rukhin, A.L.; Soto, J.; Nechvatal, J.R.; Smid, M.E.; Barker, E.; Leigh, S.; Levenson, M.; Vangel, M.; Banks, D.; Heckert, A.; et al.
A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications; Technical Report; NIST:
Gaithersburg, MD, USA, 2010.

14. Marsaglia, G. The Marsaglia Random Number CDROM including the Diehard Battery of Tests of Randomness. 1995. Available
online: https://web.archive.org/web/20160220101002/http://stat.fsu.edu/pub/diehard/ (accessed on 1 January 2022).

15. Brown, R.G.; Eddelbuettel, D.; Bauer, D. Dieharder: A Random Number Test Suite (Version 3.31.1). 2014. Available online:
https://webhome.phy.duke.edu/~rgb/General/dieharder.php (accessed on 1 January 2022).

16. Walker, J. ENT: A Pseudorandom Number Sequence Test Program. 2008. Available online: https://www.fourmilab.ch/random/
(accessed on 1 January 2022).

17. Evans, D.L.; Bond, P.; Bement, A. FIPS Pub 140-2: Security Requirements for Cryptographic Modules; Federal Information Processing
Standards Publication; NIST: Gaithersburg, MD, USA, 2002; Volume 12.

18. NIST. FIPS 140-2. Security Requirements for Cryptographic Modules; Technical Report; NIST: Gaithersburg, MD, USA, 2001.
19. NIST. FIPS 140-3. Security Requirements for Cryptographic Modules; Technical Report; NIST: Gaithersburg, MD, USA, 2019.
20. L’ecuyer, P.; Simard, R. TestU01: A C library for empirical testing of random number generators. ACM Trans. Math. Softw. (TOMS)

2007, 33, 1–40. [CrossRef]
21. Schmeiser, B.W.; Babu, A.J.G. Beta Variate Generation via Exponential Majorizing Functions. Oper. Res. 1980, 28, 917–926.

[CrossRef]
22. Stern, J.M.; de Bragança Pereira, C.A. Special characterizations of standard discrete models. Revstat-Stat. J. 2008, 6, 199–230.
23. Kuhl, M.E.; Ivy, J.S.; Lada, E.K.; Steiger, N.M.; Wagner, M.A.; Wilson, J.R. Univariate input models for stochastic simulation.

J. Simul. 2010, 4, 81–97. [CrossRef]
24. Thangjai, W.; Niwitpong, S.A.; Niwitpong, S.; Smithpreecha, N. Confidence Interval Estimation for the Ratio of the Percentiles of

Two Delta-Lognormal Distributions with Application to Rainfall Data. Symmetry 2023, 15, 794. [CrossRef]
25. Pfeifer, D.; Ragulina, O. Adaptive Bernstein Copulas and Risk Management. Mathematics 2020, 8, 2221. [CrossRef]
26. Malcolm, D.G.; Roseboom, J.H.; Clark, C.E.; Fazar, W. Application of a Technique for Research and Development Program

Evaluation. Oper. Res. 1959, 7, 646–669. [CrossRef]
27. Kelley, J.E. Critical-Path Planning and Scheduling: Mathematical Basis. Oper. Res. 1961, 9, 296–320. [CrossRef]
28. Bȩtkowski, M.; Pownuk, A. Calculating Risk of Cost Using Monte Carlo Simulations with Fuzzy Parameters in Civil Engineering.

In Proceedings of the NSF Workshop on Reliable Engineering Computing, Savannah, Georgia, 15–17 September 2004; pp. 179–192.
29. Price, A.L.; Patterson, N.J.; Plenge, R.M.; Weinblatt, M.E.; Shadick, N.A.; Reich, D. Principal components analysis corrects for

stratification in genome-wide association studies. Nat. Genet. 2006, 38, 904–909. [CrossRef]
30. Kirichenko, L.; Radivilova, T.; Bulakh, V. Machine Learning in Classification Time Series with Fractal Properties. Data 2019, 4, 5.

[CrossRef]
31. Derflinger, G.; Hörmann, W.; Leydold, J. Random Variate Generation by Numerical Inversion When Only the Density is Known.

ACM Trans. Model. Comput. Simul. 2010, 20, 1–25. [CrossRef]
32. Devroye, L. Non-Uniform Random Variate Generation; Springer: New York, NY, USA, 1986.
33. Hörmann, W.; Leydold, J. Continuous Random Variate Generation by Fast Numerical Inversion. ACM Trans. Model. Comput.

Simul. 2003, 13, 347–362. [CrossRef]
34. Marsaglia, G.; Tsang, W.W. The ziggurat method for generating random variables. J. Stat. Softw. 2000, 5, 1–7. [CrossRef]
35. Givens, G.H.; Hoeting, J.A. Computational Statistics, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2012.
36. Baumgarten, C. Random variate generation by fast numerical inversion in the varying parameter case. Res. Stat. 2023, 1, 2279060.

[CrossRef]
37. Law, A.M. Simulation Modeling and Analysis, 5th ed.; McGraw-Hill Education: New York, NY, USA, 2015.
38. Von Neumann, J. Various Techniques Used in Connection with Random Digits. In Monte Carlo Method; Householder, A.S.,

Forsythe, G.E., Germond, H.H., Eds.; US Government Printing Office: Washington, DC, USA, 1951; Volume 12, National Bureau
of Standards Applied Mathematics Series, Chapter 13, pp. 36–38.

39. Hörmann, W.; Leydold, J.; Derflinger, G. Automatic Nonuniform Random Variate Generation, 1st ed.; Springer: Berlin/Heidelberg,
Germany, 2004.

40. Marsaglia, G. The squeeze method for generating gamma variates. Comput. Math. Appl. 1977, 3, 321–325. [CrossRef]
41. Jöhnk, M. Erzeugung von betaverteilten und gammaverteilten Zufallszahlen. Metrika 1964, 8, 5–15. [CrossRef]
42. Forsythe, G.E. Von Neumann’s Comparison Method for Random Sampling from the Normal and Other Distributions. Math.

Comput. 1972, 26, 817–826.
43. Ahrens, J.H.; Dieter, U. Extensions of Forsythe’s method for random sampling from the normal distribution. Math. Comput. 1973,

27, 927–937.
44. Brent, R.P. Algorithm 488: A Gaussian pseudo random number generator. Commun. ACM 1974, 17, 704–706. [CrossRef]
45. Atkinson, A.C.; Pearce, M.C. The computer generation of Beta, Gamma and Normal Random Variables. J. R. Stat. Soc. Ser. A

1976, 139, 431–461. [CrossRef]
46. Ahrens, J.H.; Dieter, U. Computer methods for sampling from gamma, beta, poisson and binomial distributions. Computing 1974,

12, 223–246. [CrossRef]

https://web.archive.org/web/20160220101002/http://stat.fsu.edu/pub/diehard/
https://webhome.phy.duke.edu/~rgb/General/dieharder.php
https://www.fourmilab.ch/random/
http://dx.doi.org/10.1145/1268776.1268777
http://dx.doi.org/10.1287/opre.28.4.917
http://dx.doi.org/10.1057/jos.2009.31
http://dx.doi.org/10.3390/sym15040794
http://dx.doi.org/10.3390/math8122221
http://dx.doi.org/10.1287/opre.7.5.646
http://dx.doi.org/10.1287/opre.9.3.296
http://dx.doi.org/10.1038/ng1847
http://dx.doi.org/10.3390/data4010005
http://dx.doi.org/10.1145/1842722.1842723
http://dx.doi.org/10.1145/945511.945517
http://dx.doi.org/10.18637/jss.v005.i08
http://dx.doi.org/10.1080/27684520.2023.2279060
http://dx.doi.org/10.1016/0898-1221(77)90089-X
http://dx.doi.org/10.1007/BF02613706
http://dx.doi.org/10.1145/361604.361629
http://dx.doi.org/10.2307/2344349
http://dx.doi.org/10.1007/BF02293108

Mathematics 2023, 11, 4893 30 of 30

47. Atkinson, A.C.; Whittaker, J. A Switching Algorithm for the Generation of Beta Random Variables with at Least One Parameter
Less than 1. J. R. Stat. Soc. Ser. A 1976, 139, 462–467. [CrossRef]

48. Atkinson, A.C.; Whittaker, J. Algorithm AS 134: The Generation of Beta Random Variables with one Parameter Greater than and
One Parameter Less than 1. J. R. Stat. Soc. Ser. A 1979, 20, 90–93. [CrossRef]

49. Cheng, R.C.H. Generating Beta Variates with Nonintegral Shape Parameters. Commun. ACM 1978, 21, 317–322. [CrossRef]
50. Schmeiser, B.W.; Shalaby, M.A. Acceptance Rejection Methods for Beta Variate Generation. J. Am. Stat. Assoc. 1980, 75, 673–678.

[CrossRef]
51. Schmeiser, B.W.; Babu, A.J.G. Errata. Oper. Res. 1983, 31, 802.
52. Schmeiser, B.W. Generation of Variates from Distribution Tails. Oper. Res. 1980, 28, 1012–1017. [CrossRef]
53. Fox, B.L. Generation of Random Samples from the Beta F Distributions. Technometrics 1963, 5, 269–270. [CrossRef]
54. Floyd, R.W.; Rivest, R.L. Algorithm 489: The algorithm SELECT-for finding the ith smallest of n elements [M1]. Commun. ACM

1975, 18, 173. [CrossRef]
55. Singleton, R.C. Algorithm 347: An Efficient Algorithm for Sorting with Minimal Storage [M1]. Commun. ACM 1969, 12, 185–186.

[CrossRef]
56. Sakasegawa, H. Stratified rejection and squeeze method for generating beta random numbers. Ann. Inst. Stat. Math. Part B 1983,

35, 291–302. [CrossRef]
57. Zechner, H.; Stadlober, E. Generating beta variates via patchwork rejection. Computing 1993, 50, 1–18. [CrossRef]
58. Kennedy, D.P. A note on stochastic search methods for global optimization. Adv. Appl. Probab. 1988, 20, 476–478. [CrossRef]
59. Hung, Y.C.; Balakrishnan, N.; Lin, Y.T. Evaluation of Beta Generation Algorithms. Commun. Stat.-Simul. Comput. 2009, 38, 750–770.

[CrossRef]
60. Barabesi, L.; Pratelli, L. Universal methods for generating random variables with a given characteristic function. J. Stat. Comput.

Simul. 2014, 85, 1679–169. [CrossRef]
61. Devroye, L. On the computer generation of random variables with a given characteristic function. Comput. Math. Appl. 1981,

7, 547–552. [CrossRef]
62. Smarandache, F. Introduction to Neutrosophic Statistics; Sitech & Education Publishing: New York, NY, USA, 2014. [CrossRef]
63. Jdid, M.; Nabeeh, N.A. Generating Random Variables that follow the Beta Distribution Using the Neutrosophic Acceptance-

Rejection Method. Neutrosophic Sets Syst. 2023, 58, 139–147.
64. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna,

Austria, 2021.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.2307/2344350
http://dx.doi.org/10.2307/2346828
http://dx.doi.org/10.1145/359460.359482
http://dx.doi.org/10.1080/01621459.1980.10477531
http://dx.doi.org/10.1287/opre.28.4.1012
http://dx.doi.org/10.1080/00401706.1963.10490080
http://dx.doi.org/10.1145/360680.360694
http://dx.doi.org/10.1145/362875.362901
http://dx.doi.org/10.1007/BF02480984
http://dx.doi.org/10.1007/BF02280036
http://dx.doi.org/10.2307/1427401
http://dx.doi.org/10.1080/03610910802645347
http://dx.doi.org/10.1080/00949655.2014.892108
http://dx.doi.org/10.1016/0898-1221(81)90038-9
http://dx.doi.org/10.5281/zenodo.8840

	Introduction
	Preliminaries
	Methods for Generating Beta Random Variables
	Inverse Transform Method
	Composition Method
	Acceptance-Rejection (A–R) Method
	Jöhnk's Algorithm
	Forsythe's Method
	Ahrens and Dieter's Methods
	Switching Algorithms
	Cheng's Methods
	BNM Algorithm
	B2P and B4P Algorithms
	B2PE and B4PE Algorithms

	Other Methods of Generation

	Computational Development
	Conclusions
	References

