A Time-Fractional Parabolic Inequality on a Bounded Interval
Abstract
:1. Introduction
- : positive constants that are independent of and solution u. The values of such constants are not important, and could be changed from one equation (or inequality) to another;
- (): is sufficiently large.
2. Preliminary Estimates
3. Proofs of the Obtained Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fujita, H. On the blowing up of solutions of the Cauchy problem for ut=Δu+u1+α. J. Fac. Sci. Univ. Tokyo Sect. 1966, 13, 109–124. [Google Scholar]
- Levine, H.A. The role of critical exponents in blowup theorems. SIAM Rev. 1990, 32, 262–288. [Google Scholar] [CrossRef]
- Jleli, M.; Samet, B. New blow-up results for nonlinear boundary value problems in exterior domains. Nonlinear Anal. 2019, 178, 348–365. [Google Scholar] [CrossRef]
- Levine, H.A.; Zhang, Q.S. The critical Fujita number for a semilinear heat equation in exterior domains with homogeneous Neumann boundary values. Proc. R. Soc. Edinb. Sect. A 2000, 130, 591–602. [Google Scholar] [CrossRef]
- Sun, Y. The absence of global positive solutions to semilinear parabolic differential inequalities in exterior domain. Proc. Amer. Math. Soc. 2017, 145, 3455–3464. [Google Scholar] [CrossRef]
- Zhang, Q.S. A general blow-up result on nonlinear boundary-value problems on exterior domains. Proc. R. Soc. Edinb. 2001, 131, 451–475. [Google Scholar] [CrossRef]
- Bandle, C.; Levine, H.A. On the existence and non-existence of global solutions of reaction-diffusion equations in sectorial domains. Trans. Am. Math. Soc. 1989, 655, 595–624. [Google Scholar] [CrossRef]
- Filippucci, R.; Pucci, P.; Souplet, P. A Liouville-type theorem in a half-space and its applications to the gradient blow-up behavior for superquadratic diffusive Hamilton-Jacobi equations. Commun. Partial Differ. Equ. 2020, 45, 321–349. [Google Scholar] [CrossRef]
- Zhou, J. Fujita exponent for an inhomogeneous pseudoparabolic equation. Rocky Mt. Math. 2020, 50, 1125–1137. [Google Scholar] [CrossRef]
- Mitidieri, E.; Pohozaev, S. Nonexistence of weak solutions for some degenerate elliptic and parabolic problems on RN. J. Evol. Equ. 2001, 1, 189–220. [Google Scholar] [CrossRef]
- Filippucci, R.; Lombardi, S. Fujita type results for parabolic inequalities with gradient terms. J. Differ. Equations 2020, 268, 1873–1910. [Google Scholar] [CrossRef]
- Filippucci, R.; Ghergu, M. Fujita type results for quasilinear parabolic inequalities with nonlocal terms. DCDS Ser. A 2022, 42, 1817–1833. [Google Scholar] [CrossRef]
- Kartsatos, A.G.; Kurta, V.V. On the critical Fujita exponents for solutions of quasilinear parabolic inequalities. J. Math. Anal. Appl. 2002, 269, 73–86. [Google Scholar] [CrossRef]
- Kassim, M.; Furati, K.M.; Tatar, N.M. Nonexistence for fractionally damped fractional differential problems. Acta Math. Sci. 2017, 37, 119–130. [Google Scholar] [CrossRef]
- Kirane, M.; Laskri, Y.; Tatar, N.-E. Critical exponents of Fujita type for certain evolution equations and systems with spatio-temporal fractional derivatives. J. Math. Anal. Appl. 2005, 312, 488–501. [Google Scholar] [CrossRef]
- Kirane, M.; Tatar, N.-E. Nonexistence of solutions to a hyperbolic equation with a time fractional damping. Z. Anal. Anwend. 2006, 25, 131–142. [Google Scholar] [CrossRef]
- Samet, B. Blow-up phenomena for a nonlinear time fractional heat equation in an exterior domain. Comput. Math. Appl. 2019, 78, 1380–1385. [Google Scholar] [CrossRef]
- Tatar, N.-E. Nonexistence results for a fractional problem arising in thermal diffusion in fractal media. Chaos Solitons Fractals 2008, 36, 1205–1214. [Google Scholar] [CrossRef]
- Zhang, Q.G.; Sun, H.R. The blow-up and global existence of solutions of cauchy problems for a time fractional diffusion equation. Topol. Methods Nonlinear Anal. 2015, 46, 69–92. [Google Scholar] [CrossRef]
- Jleli, M.; Samet, B. Nonexistence criteria for systems of parabolic inequalities in an annulus. J. Math. Anal. Appl. 2022, 514, 126352. [Google Scholar] [CrossRef]
- Dehghan, M.; Nourian, M.; Menhaj, M.B. Numerical solution of Helmholtz equation by the modified Hopfield finite difference techniques. Numer. Methods Partial Differ. Equ. 2009, 25, 637–656. [Google Scholar] [CrossRef]
- Li, X.L.; Li, S.L. Meshless Galerkin analysis of the generalized Stokes problem. Comput. Math. Appl. 2023, 144, 164–181. [Google Scholar] [CrossRef]
- Shi, R.; Wei, T.; Qin, H.H. A fourth-order modified method for the Cauchy problem of the modified Helmholtz equation. Numer. Math. Appl. 2009, 2, 326–340. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: San Diego, CA, USA, 2006. [Google Scholar]
- Sultan, A.B.; Jleli, M.; Samet, B. Nonexistence of global solutions to time-fractional damped wave inequalities in bounded domains with a singular potential on the boundary. Fractal Fract. 2021, 5, 258. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alshabanat, A.; Almoalim, E.; Jleli, M.; Samet, B. A Time-Fractional Parabolic Inequality on a Bounded Interval. Mathematics 2023, 11, 4892. https://doi.org/10.3390/math11244892
Alshabanat A, Almoalim E, Jleli M, Samet B. A Time-Fractional Parabolic Inequality on a Bounded Interval. Mathematics. 2023; 11(24):4892. https://doi.org/10.3390/math11244892
Chicago/Turabian StyleAlshabanat, Amal, Eman Almoalim, Mohamed Jleli, and Bessem Samet. 2023. "A Time-Fractional Parabolic Inequality on a Bounded Interval" Mathematics 11, no. 24: 4892. https://doi.org/10.3390/math11244892
APA StyleAlshabanat, A., Almoalim, E., Jleli, M., & Samet, B. (2023). A Time-Fractional Parabolic Inequality on a Bounded Interval. Mathematics, 11(24), 4892. https://doi.org/10.3390/math11244892