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1. Introduction

We consider problem
utβ − uxx − λ2u ≥W|u|d in R+×]ξ1, ξ2[,
u(0, ·) ≥ u0 in ]ξ1, ξ2[,
u(·, ξ2) ≥ 0 in R+,

(1)

where R+ = (0, ∞), u = u(t, x), λ 6= 0, ξ2 − π
|λ| ≤ ξ1 < ξ2, 0 < β < 1, utβ is the partial

derivative of u w.r.t. the time variable in the Caputo sense, d > 1 and W > 0 almost
everywhere. Namely, we focus on nonexistence criteria for weak solutions to (1).

Existence and nonexistence theorems for parabolic equations and inequalities have
attracted much attention in the literature. One of the remarkable results in this direction is
due to Fujita [1], where he considered equation

ut − ∆u = ud in R+ ×RN , (2)

where d > 1. Namely, it was proven that dN = 1 + 2
N is critical, in the sense that, if

u(0, ·) > 0 and d < dN , then the set of global positive solutions to (2) is empty; if d > dN
and u0 is small, then (2) admits global positive solutions. It was proven later (see, e.g., [2])
that, if q = qN , then the set of global positive solutions to (2) is empty. Problem (2) has
also been studied on other domains; for instance, exterior domains [3–6] and sectorial
domains [7]. In [8], by showing that any solution to equation −∆u = |∇u|p, p > 2 in the
half-space with an homogeneous Dirichlet boundary condition has to be one-dimensional,
the authors provided several applications to the parabolic problem ut − ∆u = |∇u|p posed
in a bounded domain (satisfying a certain regularity) with an homogeneous Dirichlet
boundary condition. In [9], problem ut − τ∆ut = ∆u + |u|p + f (x), t > 0, x ∈ RN was
considered, where τ > 0, p > 1 and f is a nontrivial continuous function satisfying
f (x)→ 0 as |x| → ∞. It was proven that this problem admits a Fujita-type critical exponent
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pc = ∞ if N ∈ {1, 2}, pc = N
N−2 if N ≥ 3. In [10], Mitidieri and Pohozaev considered

parabolic inequality
∂u
∂t
− |x|ξ ∆u ≥ |u|d in R+ ×RN ,

where 0 ≤ ξ < 2. They proved that for a certain class of the initial values, the set of weak
solutions is empty, provided that 1 < d ≤ 1 + 2−ξ

N−ξ . Parabolic differential inequalities
have also been studied for different kinds of nonlinearities. For instance, Filippucci and
Lombardi [11] considered differential inequality

ut − div(|∇u|d−2∇u) ≥ F(u, |∇u|) in R+ ×RN ,

where F(u, |∇u|) = a(x)uq − b(x)um|∇u|s, 0 ≤ m < q, 0 < s ≤ p(q−m)
q+1 and a, b are

nonnegative weights. We also refer to [12], where quasilinear parabolic inequalities were
studied in R+ × RN with nonlocal terms of the form (K ∗ up)uq, where p, q > 0, K > 0
belongs to a certain class of weight functions and ∗ is the convolution product w.r.t. the
variable space. In [13], Kartsatos and Kurta studied the blow-up of solutions to parabolic
inequalities of the form ut ≥ F(u) + |u|p−1u, t > 0, x ∈ RN , where p > 1 and F(u) includes
several classes of quasilinear differential operators.

The study of blow-up for partial differential equations and inequalities with partial
fractional derivatives w.r.t. the time variable has attracted much attention in the literature,
see, e.g., [14–19]. In particular, the time-fractional version (in the Caputo sense) of (2) was
studied by Zhang and Sun in [19], where it was shown that qN = 1+ 2

N is still critical (in the
Fujita sense). We notice that when λ→ 0 and β→ 1−, (1) reduces to parabolic inequality

ut − uxx ≥W|u|d in R+×]ξ1, ξ2[.

We refer to [20] for the study of problems of the above type in the N-dimensional case.
The novelty of this work is the consideration of time-fractional parabolic inequalities

involving modified Helmholtz operator − ∂2

∂x2 − λ2 on bounded intervals. Namely, as far as
we know, the study of nonexistence for evolution inequalities involving the above operator
has not been previously considered. For some numerical studies of problems involving the
modified Helmholtz operator, see, e.g., [21–23].

We refer to [24] for more details about the following notions. We let Γ(·) be the Gamma
function. We let χ be a continuous function in [0, τ], τ > 0. For ς > 0, we let

Iς
0 χ (t) = [Γ(ς)]−1

∫ t

0
(t− s)ς−1χ(s) ds, Iς

τχ (t) = [Γ(ς)]−1
∫ τ

t
(s− t)ς−1g(s) ds, 0 < t < τ.

Lemma 1. We let χi, i = 1, 2, be two continuous functions in [0, τ], and ς > 0. We have∫ τ

0
Iς
0 χ1 (s) χ2(s) ds =

∫ τ

0
χ1(s) Iς

τχ2 (s) ds.

We let χ be a continuously differentiable function in [0, τ]. The derivative of χ of order
0 < ς < 1 in the sense of Caputo is defined by

CDς
0χ (t) = I1−ς

0 χ′ (t), 0 < t < τ.

The above definition can be extended to functions χ that are absolutely continuous in
[0, τ] (see [24]).

We let υ = υ(t, x), (t, x) ∈ [0, τ]× I, where I ⊂ R. We let υ(x,·) : [0, τ] 3 t → υ(t, x),
x ∈ I. For ς > 0, by Iς

0 υ (t, x) and Iς
τυ (t, x), we mean

Iς
0 υ (t, x) = Iς

0 υ(x,·) (t), Iς
τυ (t, x) = Iς

τυ(x,·) (t).
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We let 0 < ς < 1. By υtς , we mean

υtς(t, x) = CDς
0υ(x,·) (t).

We let
AT = [0, T]×]ξ1, ξ2], T > 0

and

ΛT =
{

ϕ = ϕ(t, x) ∈ C2(AT) : ϕ ≥ 0, supp(ϕ) ⊂⊂ AT , ϕ(·, ξ2) = 0, ϕx(·, ξ2) ≤ 0
}

.

We now define solutions to (1).

Definition 1. We let λ 6= 0, ξ2 − π
|λ| ≤ ξ1 < ξ2, 0 < β < 1, u0 ∈ L1

loc(]ξ1, ξ2]) and W > 0
almost everywhere. By a weak solution to (1), we mean function

u ∈ Ld
loc([0, ∞[×]ξ1, ξ2], W dt dx) ∩ L1

loc([0, ∞[×]ξ1, ξ2]), d > 1

that satisfies∫
AT

|u|d ϕW dt dx +
∫ ξ2

ξ1

u0(x)I1−β
T ϕ (0, x) dx ≤ −

∫
AT

u
(

ϕxx + λ2 ϕ +
(

I1−β
T ϕ

)
t

)
dt dx (3)

for every ϕ ∈ ΛT , T > 0.

The set of weak solutions to (1) is denoted by S . Due to Lemma 1, we can show that
any solution u ∈ C2([0, ∞[×]ξ1, ξ2]) to (1) belongs to S .

The following theorem is our main result.

Theorem 1. We let λ 6= 0, ξ2 − π
|λ| ≤ ξ1 < ξ2, 0 < β < 1 and d > 1. We let W > 0 almost

everywhere and W
−1

d−1 ∈ L1
loc([0, ∞[×]ξ1, ξ2]). We assume that

u0 ∈ L1(]ξ1, ξ2[),
∫ ξ2

ξ1

u0(x) sin(|λ|(ξ2 − x)) dx > 0 (4)

and there exists j > 0 such that
lim inf

R→∞
F(j, R) = 0, (5)

where

F(j, R) = Rj(β−1)+ 2d
d−1

∫ Rj

0

∫ ξ1+
1
R

ξ1+
1

2R

W
−1

d−1 dx dt + R
j(1−d−β)

d−1

∫ Rj

0

∫ ξ2

ξ1+
1

2R

W
−1

d−1 dx dt.

Then S = ∅.

We prove the above result using the test function method (see, e.g., Mitidieri and
Pohozaev [10]), which requires a suitable choice of test functions. In our case, we construct
a family of test functions belonging to ΛT by taking into consideration the boundedness
of the domain, the time-fractional derivative, the properties of the differential operator
− ∂2

∂x2 − λ2 and the boundary conditions.
We now investigate the case when

W(t, x) = (t + 1)$. (6)

From Theorem 1, we deduce the following result.
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Corollary 1. We let λ 6= 0, ξ2 − π
|λ| ≤ ξ1 < ξ2 and 0 < β < 1. We let W be the function defined

by (6). We assume that u0 ∈ L1(]ξ1, ξ2[) and (4) holds. If

d > 1, $ > β(d− 1),

then S = ∅.

We next consider the case when

W(t, x) = (x− ξ1)
`. (7)

Corollary 2. We let λ 6= 0, ξ2 − π
|λ| ≤ ξ1 < ξ2 and 0 < β < 1. We let W be the function defined

by (7). We assume that u0 ∈ L1(]ξ1, ξ2[) and (4) holds. If

` < −2, 1 < d < −`− 1,

then S = ∅.

Finally, we study the case when

W(t, x) = (x− ξ1)
`(t + 1)$. (8)

Corollary 3. We let λ 6= 0, ξ2 − π
|λ| ≤ ξ1 < ξ2 and 0 < β < 1. We let W be the function defined

by (8). We assume that u0 ∈ L1(]ξ1, ξ2[) and (4) holds. If $ > 0 and

1 < d < 1 +
$

β
; or β(`+ 2) < −$, d = 1 +

$

β
,

then S = ∅.

Some preliminary estimates are established in Section 2. We prove our main result in
Section 3.

We use the following notations:

• Ci, C: positive constants that are independent of T, R and solution u. The values
of such constants are not important, and could be changed from one equation (or
inequality) to another;

• s� 1 (s ∈ R): s > 0 is sufficiently large.

2. Preliminary Estimates

We let λ 6= 0, ξ2 − π
|λ| ≤ ξ1 < ξ2, d > 1 and 0 < β < 1. We let W > 0 almost

everywhere, and u0 ∈ L1
loc(]ξ1, ξ2]). For all T > 0, we let

ΛT = {ϕ ∈ ΛT : ωi(ϕ) < ∞, i = 1, 2},

where

ω1(ϕ) =
∫

supp(ϕxx+λ2 ϕ)

∣∣∣ϕxx + λ2 ϕ
∣∣∣ d

d−1
(ϕW)

−1
d−1 dx dt, (9)

ω2(ϕ) =
∫

supp
((

I1−β
T ϕ

)
t

)∣∣∣(I1−β
T ϕ

)
t

∣∣∣ d
d−1

(ϕW)
−1
q−1 dx dt. (10)

Lemma 2. We let ϕ ∈ ΛT , T > 0. If u ∈ S , then

∫ ξ2

ξ1

u0(x)I1−β
T ϕ (0, x) dx ≤ C

2

∑
i=1

ωi(ϕ). (11)
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Proof. We let u ∈ S . By (3), we have∫
AT

|u|d ϕW dx dt +
∫ ξ2

ξ1

u0(x)I1−β
T ϕ (0, x) dx

≤
∫
AT

|u|
∣∣∣ϕxx + λ2 ϕ

∣∣∣ dx dt +
∫
AT

|u|
∣∣∣(I1−β

T ϕ
)

t

∣∣∣ dx dt := I1 + I2.
(12)

We now use Young’s inequality to obtain

I1 =
∫
AT

(
|u|ϕ

1
d W

1
d

)(
ϕ
−1
d

∣∣∣ϕxx + λ2 ϕ
∣∣∣W −1

d

)
dx dt

≤ 1
2

∫
AT

|u|d ϕW dx dt + Cω1(ϕ)
(13)

and
I2 ≤

1
2

∫
AT

|u|d ϕW dx dt + Cω2(ϕ). (14)

Finally, (11) follows from (12)–(14).

For m� 1 and T > 0, we let

ζT(s) =
(

1− s
T

)m
(15)

for every s ∈ [0, T]. We let

ϑ ∈ C∞([0, ∞[), 0 ≤ ϑ ≤ 1, ϑ|[0, 1
2 ]

= 0, ϑ|[1,∞) = 1. (16)

For R� 1, we let

ϑR(x) = κ(x)ϑm(R(x− ξ1)), ξ1 ≤ x ≤ ξ2, (17)

where
κ(x) = sin(|λ|(ξ2 − x)). (18)

We remark that
κ ≥ 0, κ′′ + λ2κ = 0, κ(ξ2) = 0. (19)

For T > 0 and m, R� 1, we let

ϕ(t, x) = ϑR(x)ζT(t) (20)

for every (t, x) ∈ AT . We can easily check that ϕ ∈ ΛT .

Lemma 3 (see [25]). We have

I1−β
T ζT (s) = C

(
1− s

T

)1−β+m
.

Lemma 4. We let W
−1

d−1 ∈ L1
loc(AT). We have

ω1(ϕ) ≤ CR
2d

d−1

∫ T

0

∫ ξ1+
1
R

ξ1+
1

2R

W
−1

d−1 dx dt. (21)

Proof. By (9), (15) and (20), we have

ω1(ϕ) ≤
∫ T

0

∫
supp(ϑ′′R+λ2ϑR)

∣∣∣ϑ′′R + λ2ϑR

∣∣∣ d
d−1

(WϑR)
−1

d−1 dx dt. (22)
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Furthermore, using (17) and (19), we obtain

ϑ′′R(x) + λ2ϑR(x) = κ(x)
[
ϑm(Rxξ1

)]′′
+ 2κ′(x)

[
ϑm(Rxξ1

)]′, xξ1 = x− ξ1, (23)

which implies by (16) that

∫ T

0

∫
supp(ϑ′′R+λ2ϑR)

∣∣∣ϑ′′R + λ2ϑR

∣∣∣ d
d−1

(WϑR)
−1

d−1 dx dt

=
∫ T

0

∫ ξ1+
1
R

ξ1+
1

2R

∣∣∣ϑ′′R + λ2ϑR

∣∣∣ d
d−1

(WϑR)
−1

d−1 dx dt := J.

(24)

Moreover, by (16) and (18), for all ξ1 +
1

2R < x < ξ1 +
1
R , we have

C1 ≤ κ(x) ≤ C2, |κ′(x)| ≤ C

and ∣∣∣[ϑm(Rxξ1

)]′∣∣∣ ≤ CRϑm−1(Rxξ1

)
,
∣∣∣[ϑm(Rxξ1

)]′′∣∣∣ ≤ CR2ϑm−2(Rxξ1

)
.

Hence, by (23) (and since 0 ≤ ϑ ≤ 1), it holds that

J ≤ CR
2d

d−1

∫ T

0

∫ ξ1+
1
R

ξ1+
1

2R

W
−1

d−1 dx dt. (25)

From (22), (24) and (25), we obtain (21).

Lemma 5. We let W
−1

d−1 ∈ L1
loc(AT). We have

ω2(ϕ) ≤ CT
−βd
d−1

∫ T

0

∫ ξ2

ξ1+
1

2R

W
−1

d−1 dx dt. (26)

Proof. Using (10), (16) and (20), we obtain

ω2(ϕ) =
∫ T

0

∫ b

ξ1+
1

2R

∣∣∣(I1−β
T ζT)

′
∣∣∣ d

d−1
ϑR(WζT)

−1
d−1 dx dt. (27)

By (15) and Lemma 3, for all 0 < t < T, we have

ζ
−1

d−1
T

∣∣∣(I1−β
T ζT)

′
∣∣∣ d

d−1 ≤ CT
−βd
d−1 . (28)

Moreover, for all ξ1 +
1

2R < x < ξ2, by (17) and (18) (and since 0 ≤ ϑ ≤ 1), we have

ϑR(x) ≤ C. (29)

Therefore, (26) follows from (27)–(29).

3. Proofs of the Obtained Results

Proof of Theorem 1. We let u ∈ S . For m, T, R� 1, we let ϕ be the function given by (20).
Due to Lemmas 2, 4 and 5, we have ϕ ∈ ΛT and∫ ξ2

ξ1

u0(x)I1−β
T ϕ (0, x) dx

≤ C

(∫ T

0

∫ ξ1+
1
R

ξ1+
1

2R

W
−1

d−1 dx dt R
2d

d−1 +
∫ T

0

∫ ξ2

ξ1+
1

2R

W
−1

d−1 dx dt T
−βd
d−1

)
.

(30)
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Using (20) and Lemma 3, we obtain∫ ξ2

ξ1

u0(x)I1−β
T ϕ (0, x) dx = I1−β

T ζT(0)
∫ ξ2

ξ1

u0(x)ϑR(x) dx

= CT1−β
∫ ξ2

ξ1

u0(x) sin(|λ|(ξ2 − x))ϑm(R(x− ξ1)) dx.
(31)

Since u0 ∈ L1(]ξ1, ξ2[), by (16) and the dominated convergence theorem, it holds that

lim
R→∞

∫ ξ2

ξ1

u0(x) sin(|λ|(ξ2 − x))ϑm(R(x− ξ1)) dx =
∫ ξ2

ξ1

u0(x) sin(|λ|(ξ2 − x)) dx,

which implies by (4) that∫ ξ2

ξ1

u0(x) sin(|λ|(ξ2 − x))ϑm(R(x− ξ1)) dx ≥ C
∫ ξ2

ξ1

u0(x) sin(|λ|(ξ2 − x)) dx. (32)

Then, it follows from (30)–(32) that

T1−β
∫ ξ2

ξ1

u0(x) sin(|λ|(ξ2 − x)) dx

≤ C

(∫ T

0

∫ ξ1+
1
R

ξ1+
1

2R

W
−1

d−1 dx dt R
2d

d−1 +
∫ T

0

∫ ξ−2

ξ1+
1

2R

W
−1

d−1 dx dt T
−βd
d−1

)
,

that is, ∫ ξ2

ξ1

u0(x) sin(|λ|(ξ2 − x)) dx

≤ C

(
R

2d
d−1 Tβ−1

∫ T

0

∫ ξ1+
1
R

ξ1+
1

2R

W
−1

d−1 dx dt + T
1−d−β

d−1

∫ T

0

∫ ξ2

ξ1+
1

2R

W
−1

d−1 dx dt

)
.

(33)

We now take T = Rj, where j > 0. In this case, (33) reduces to∫ ξ2

ξ1

u0(x) sin(|λ|(ξ2 − x)) dx ≤ F(j, R). (34)

In particular, for j > 0 satisfying (5), taking the infimum limit as R → ∞ in (34), it
holds that ∫ ξ2

ξ1

u0(x) sin(|λ|(ξ2 − x)) dx ≤ 0.

Then, we obtain a contradiction with (4).

Proof of Corollary 1. For all j > 0 and R� 1, we have

∫ Rj

0

∫ ξ2

ξ1+
1

2R

W
−1

d−1 dx dt ≤ C
(

ln R + Rj(1− $
d−1 )

)
,

which implies that

F(j, R) ≤ C(Rγ1 ln R + Rγ2 ln R + Rγ3 + Rγ4),

where

γ1 = (β− 1)j +
2d

d− 1
, γ2 = −j

(
1 +

β

d− 1

)
, γ3 =

2d− j($− β(d− 1))
d− 1
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and

γ4 =
−j($ + β)

d− 1
.

We observe that for all j > 0, we have γ2 < 0 and γ4 < 0. Moreover, taking

j
2d

> max
{

1
(1− β)(d− 1)

,
1

$− β(d− 1)

}
,

we obtain γ1 < 0 and γ3 < 0. Hence, (5) holds, and due to Theorem 1, we obtain the
desired result.

Proof of Corollary 2. For all j > 0 and R� 1, we have

∫ Rj

0

∫ ξ1+
1
R

ξ1+
1

2R

W
−1

d−1 dx dt ≤ CRj+ `
d−1−1,

∫ Rj

0

∫ ξ2

ξ1+
1

2R

W
−1
q−1 dx dt ≤ CRj

(
ln R + R

`
d−1−1

)
,

which implies that
F(j, R) ≤ C(Rµ1 + Rµ2 + Rµ3 ln R),

where
µ1 = jβ +

d + `+ 1
d− 1

, µ2 =
−βj + `− d + 1

d− 1
, µ3 =

−βj
d− 1

.

We observe that for all j > 0, we have µ2 < 0 and µ3 < 0. Moreover, for

0 < β(d− 1)j < −(d + `+ 1),

we obtain µ1 < 0. Then, (5) holds. Therefore, Theorem 1 yields the following result.

Proof of Corollary 3. For all j > 0 and R� 1, it holds that

F(j, R) ≤ C
(

Rβ1 ln R + Rβ2 ln R + Rβ3 ln R + Rβ4(ln R)2 + Rβ5 + Rβ6
)

,

where

β1 = j(β− 1) +
`+ 1 + d

d− 1
, β2 =

−j($ + β)

d− 1
, β3 =

`+ 1− d + j(1− β− d)
d− 1

and

β4 =
j(−β + 1− d)

d− 1
, β5 = j

(
β− $

d− 1

)
+

`+ 1 + d
d− 1

, β6 =
`+ 1− d− j(β + $)

d− 1
.

We remark that β4 < 0 for every j > 0. Moreover, when

j > max
{

0,
d + `+ 1

(1− β)(d− 1)
,
`− d + 1
d + β− 1

,
`− d + 1

β + $

}
, (35)

we obtain β1 < 0, β3 < 0 and β6 < 0. We also have β2 < 0 if $ > −β. We next consider
two cases.
Case 1: If

$ > 0, 1 < d < 1 +
$

β
,

then, in addition to (35), taking

j >
d + `+ 1

$− β(d− 1)
,

we obtain β5 < 0.
Case 2: If

$ > 0, d =
$

β
+ 1 < −`− 1,
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then
β5 =

d + `+ 1
d− 1

< 0.

Therefore, (5) holds in each case. Theorem 1 yields the desired result.

4. Conclusions

A general nonexistence result is obtained for Problem (1) (see Theorem 1). Namely,
we proved that, if the initial value satisfies (4) and (5) holds for some j > 0, then the set of
weak solutions is empty. Next, we discussed some examples of the potential function W
(see Corollaries 1–3). In this paper, we only considered the one-dimensional case. It will be
also interesting to investigate the higher-dimensional case, namely problem

utβ − ∆u− λ2u ≥W|u|d in R+ ×Ω,
u(0, ·) ≥ u0 in Ω,
u ≥ 0 in R+ × Σ,

where 0 < β < 1, d > 1, Ω =
{

x ∈ RN : ξ1 < |x| < ξ2
}

, 0 < ξ1 < ξ2 and Σ ={
x ∈ RN : |x| = ξ2

}
.
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