New Criteria of Oscillation for Linear Sturm–Liouville Delay Noncanonical Dynamic Equations
Abstract
:1. Introduction
2. Main Results
- (a)
- for all ;
- (b)
- there is such that for all .
- (a)
- eventually;
- (b)
- eventually.
3. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Frassu, S.; Viglialoro, G. Boundedness in a chemotaxis system with consumed chemoattractant and produced chemorepellent. Nonlinear Anal. 2021, 213, 112505. [Google Scholar] [CrossRef]
- Li, T.; Viglialoro, G. Boundedness for a nonlocal reaction chemotaxis model even in the attraction-dominated regime. Differ. Equ. 2021, 34, 315–336. [Google Scholar] [CrossRef]
- Li, T.; Frassu, S.; Viglialoro, G. Combining effects ensuring boundedness in an attraction-repulsion chemotaxis model with production and consumption. Z. Angew. Math. Phys. 2023, 74, 21. [Google Scholar] [CrossRef]
- Li, T.; Pintus, N.; Viglialoro, G. Properties of solutions to porous medium problems with different sources and boundary conditions. Z. Angew. Math. Phys. 2019, 70, 86. [Google Scholar] [CrossRef]
- Řezníčková, J. Hille-Nehari type oscillation and nonoscillation criteria for linear and half-linear differential equations. MATEC Web Conf. 2019, 292, 01061. [Google Scholar] [CrossRef]
- Baculikova, B. Oscillation and asymptotic properties of second order half-linear differential equations with mixed deviating arguments. Mathematics 2021, 9, 2552. [Google Scholar] [CrossRef]
- Demidenko, G.V.; Matveeva, I.I. Asymptotic stability of solutions to a class of second-order delay differential equations. Mathematics 2021, 9, 1847. [Google Scholar] [CrossRef]
- Kac, V.; Chueng, P. Quantum Calculus; Universitext; Springer: New York, NY, USA, 2002. [Google Scholar]
- Hilger, S. Analysis on measure chains—A unified approach to continuous and discrete calculus. Results Math. 1990, 18, 18–56. [Google Scholar] [CrossRef]
- Bohner, M.; Peterson, A. Advances in Dynamic Equations on Time Scales; Birkhäuser: Boston, MA, USA, 2003. [Google Scholar]
- Trench, W.F. Canonical forms and principal systems for general disconjugate equations. Trans. Amer. Math. Soc. 1973, 189, 319–327. [Google Scholar] [CrossRef]
- Fite, W.B. Concerning the zeros of the solutions of certain differential equations. Trans. Amer. Math. Soc. 1918, 19, 341–352. [Google Scholar] [CrossRef]
- Hille, E. Non-oscillation theorems. Trans. Amer. Math. Soc. 1948, 64, 234–252. [Google Scholar] [CrossRef]
- Erbe, L. Oscillation criteria for second order nonlinear delay equations. Canad. Math. Bull. 1973, 16, 49–56. [Google Scholar] [CrossRef]
- Ohriska, J. Oscillation of second order delay and ordinary differential equations. Czech. Math. J. 1984, 34, 107–112. [Google Scholar] [CrossRef]
- Erbe, L.; Hassan, T.S.; Peterson, A.; Saker, S.H. Oscillation criteria for half-linear delay dynamic equations on time scales. Nonlinear Dynam. Sys. Th. 2009, 9, 51–68. [Google Scholar]
- Karpuz, B. Hille–Nehari theorems for dynamic equations with a time scale independent critical constant. Appl. Math. Comput. 2019, 346, 336–351. [Google Scholar] [CrossRef]
- Hassan, T.S.; Sun, Y.; Abdel Menaem, A. Improved oscillation results for functional nonlinear dynamic equations of second order. Mathematics 2020, 8, 1897. [Google Scholar] [CrossRef]
- Hassan, T.S.; El-Nabulsi, R.A.; Abdel Menaem, A. Amended criteria of oscillation for nonlinear functional dynamic equations of second-order. Mathematics 2021, 9, 1191. [Google Scholar] [CrossRef]
- Džurina, J. Oscillation of second order advanced differential equations. Electron. J. Qual. Theo. 2018, 2018, 1–9. [Google Scholar] [CrossRef]
- Fišnarová, S.; Pátíková, Z. Hille–Nehari type criteria and conditionally oscillatory half-linear differential equations. Electron. J. Qual. Theo. 2019, 2019, 1–22. [Google Scholar] [CrossRef]
- Řehák, P. A critical oscillation constant as a variable of time scales for half-linear dynamic equations. Math. Slovaca 2010, 60, 237–256. [Google Scholar] [CrossRef]
- Saker, S.H. Oscillation criteria of second-order half-linear dynamic equations on time scales. J. Comput. Appl. Math. 2005, 177, 375–387. [Google Scholar] [CrossRef]
- Zhang, C.; Li, T. Some oscillation results for second-order nonlinear delay dynamic equations. Appl. Math. Lett. 2013, 26, 1114–1119. [Google Scholar] [CrossRef]
- Sun, S.; Han, Z.; Zhao, P.; Zhang, C. Oscillation for a class of second-order Emden-Fowler delay dynamic equations on time scales. Adv. Difference Equ. 2010, 2010, 642356. [Google Scholar] [CrossRef]
- Bazighifan, O.; El-Nabulsi, E.M. Different techniques for studying oscillatory behavior of solution of differential equations. Rocky Mountain J. Math. 2021, 51, 77–86. [Google Scholar] [CrossRef]
- Džurina, J.; Jadlovská, I. A sharp oscillation result for second-order half-linear noncanonical delay differential equations. Electron. J. Qual. Theo. 2020, 2020, 1–14. [Google Scholar] [CrossRef]
- Grace, S.R.; Graef, J.R.; Tunc, E. Oscillation of second-order nonlinear noncanonical dynamic equations with deviating arguments. Acta Math. Univ. Comen. 2022, 91, 113–120. [Google Scholar]
- Zhang, Q.; Gao, L.; Wang, L. Oscillation of second-order nonlinear delay dynamic equations on time scales. Comput. Math. Appl. 2011, 61, 2342–2348. [Google Scholar] [CrossRef]
- Chatzarakis, G.E.; Moaaz, O.; Li, T.; Qaraad, B. Oscillation theorems for nonlinear second-order differential equations with an advanced argument. Adv. Difference Equ. 2020, 2020, 160. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, T.S.; Bohner, M.; Florentina, I.L.; Abdel Menaem, A.; Mesmouli, M.B. New Criteria of Oscillation for Linear Sturm–Liouville Delay Noncanonical Dynamic Equations. Mathematics 2023, 11, 4850. https://doi.org/10.3390/math11234850
Hassan TS, Bohner M, Florentina IL, Abdel Menaem A, Mesmouli MB. New Criteria of Oscillation for Linear Sturm–Liouville Delay Noncanonical Dynamic Equations. Mathematics. 2023; 11(23):4850. https://doi.org/10.3390/math11234850
Chicago/Turabian StyleHassan, Taher S., Martin Bohner, Iambor Loredana Florentina, Amir Abdel Menaem, and Mouataz Billah Mesmouli. 2023. "New Criteria of Oscillation for Linear Sturm–Liouville Delay Noncanonical Dynamic Equations" Mathematics 11, no. 23: 4850. https://doi.org/10.3390/math11234850
APA StyleHassan, T. S., Bohner, M., Florentina, I. L., Abdel Menaem, A., & Mesmouli, M. B. (2023). New Criteria of Oscillation for Linear Sturm–Liouville Delay Noncanonical Dynamic Equations. Mathematics, 11(23), 4850. https://doi.org/10.3390/math11234850