Three Weak Solutions for a Neumann p(x)-Laplacian-like Problem with Two Control Parameters
Abstract
:1. Introduction
- (A)
- (A1)
- Assume that satisfies the following
2. Background Set Up
- (1)
- (1)
- (3)
3. Main Result’s Proof
4. Examples
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ružička, M. Electrorheological Fluids: Modeling and Mathematical Theory; Springer: Berlin/Heidelberg, Germany, 2000; p. 1748. [Google Scholar]
- Zhikov, V.V. Lavrentiev phenomenon and homogenization for some variational problems. C. R. Acad. Sci. Paris Sér. I Math. 1993, 316, 435–439. [Google Scholar]
- Rajagopal, K.; Ružička, M. Mathematical modelling of electrorheological fluids. Contin. Mech. Thermodyn. 2001, 13, 59–78. [Google Scholar] [CrossRef]
- Chen, Y.; Levine, S.; Rao, M. Variable exponent, linear growth functionals in image processing. SIAM J. Appl. Math. 2006, 66, 1383–1406. [Google Scholar] [CrossRef]
- Antontsev, S.N.; Shmarev, S.I. A model porous medium equation with variable exponent of nonlinearity: Existence, uniqueness and localization properties of solutions. Nonlinear Anal. 2005, 60, 515–545. [Google Scholar] [CrossRef]
- Rodrigues, M.M. Multiplicity of solutions on a nonlinear eigenvalue problem for p(x)- Laplacian-like operators. Mediterr. J. Math. 2012, 9, 211–223. [Google Scholar] [CrossRef]
- Shokooh, S.; Afrouzi, G.A.; Heidarkhani, S. Multiple solutions for p(x)-Laplacian-Like problems with Neumann condition. Acta Univ. Apulensis. 2017, 49, 111–128. [Google Scholar]
- Zhou, Q.M.; Ge, B. Three Solutions for Inequalities Dirichlet Problem Driven by p(x)-Laplacian-Like. In Abstract and Applied Analysis; Hindawi Publishing Corporation: Cairo, Egypt, 2013. [Google Scholar] [CrossRef]
- Ge, B. On Superlinear p(x)-Laplacian-Like Problem without Ambrosetti and Rabinowitz condition. Bull. Korean Math. Soc. 2014, 51, 409–421. [Google Scholar] [CrossRef]
- Heidarkhani, S.; Afrouzi, G.; Moradi, S. Variational Approaches to P(X)-Laplacian-Like Problems with Neumann Condition Originated from a Capillary Phenomena. Int. J. Nonlinear Sci. Numer. Simul. 2018, 19, 189–203. [Google Scholar] [CrossRef]
- Fan, X.; Zhao, D. On the spaces Lp(x)(Ω) and Wm,p(x)(Ω). J. Math. Anal. Appl. 2001, 263, 424–446. [Google Scholar] [CrossRef]
- Rădulescu, V.D. Nonlinear elliptic equations with variable exponent: Old and new. Nonlinear Anal. 2015, 121, 336–369. [Google Scholar] [CrossRef]
- Rădulescu, V.D.; Repovš, D.D. Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis; Chapman and Hall/CRC, Taylor & Francis Group: Boca Raton, FL, USA, 2015. [Google Scholar]
- Papageorgiou, N.S.; Rădulescu, V.D.; Repovš, D.D. Nonlinear Analysis—Theory and Methods; Springer Monographs in Mathematics; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Edmunds, D.; Rakosnik, J. Sobolev embeddings with variable exponent. Studia Math. 2000, 143, 267–293. [Google Scholar] [CrossRef]
- Kefi, K. p(x)-Laplacian with indefinite weight. Proc. Am. Math. Soc. 2011, 139, 4351–4360. [Google Scholar] [CrossRef]
- Bonanno, G.; Marano, S.A. On the structure of the critical set of nondifferentiable functions with a weak compactness condition. Appl. Anal. 2010, 89, 1–10. [Google Scholar] [CrossRef]
- Kefi, K.; Irzi, N.; Al-Shomrani, M.M. Existence of three weak solutions for fourth-order Leray–Lions problem with indefinite weights. Complex Var. Elliptic Equ. 2023, 68, 1473–1484. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kefi, K. Three Weak Solutions for a Neumann p(x)-Laplacian-like Problem with Two Control Parameters. Mathematics 2023, 11, 4789. https://doi.org/10.3390/math11234789
Kefi K. Three Weak Solutions for a Neumann p(x)-Laplacian-like Problem with Two Control Parameters. Mathematics. 2023; 11(23):4789. https://doi.org/10.3390/math11234789
Chicago/Turabian StyleKefi, Khaled. 2023. "Three Weak Solutions for a Neumann p(x)-Laplacian-like Problem with Two Control Parameters" Mathematics 11, no. 23: 4789. https://doi.org/10.3390/math11234789
APA StyleKefi, K. (2023). Three Weak Solutions for a Neumann p(x)-Laplacian-like Problem with Two Control Parameters. Mathematics, 11(23), 4789. https://doi.org/10.3390/math11234789