Nonlinear Scattering Matrix in Quantum Optics
Abstract
:1. Introduction
2. Nonlinear Scattering Matrix
2.1. Operator Decomposition
2.2. Finding the Operators and
2.3. Finding the Operators and
2.4. Scattering Matrix and Its Properties
3. Special Cases of the Scattering Matrix
3.1. Scattering Matrix of a Linear Beam Splitter
3.2. Scattering Matrix of a Parametric Amplifier, Phase-Conjugating Mirror, Squeezed States
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Scully, M.; Zubairy, M. Quantum Optics; Cambridge University Press: Cambridge, UK, 1997; p. 630. [Google Scholar]
- Mandel, L.; Wolf, E. Optical Coherence and Quantum Optics; Cambridge University Press: Cambridge, UK, 1995; p. 1166. [Google Scholar]
- Loudon, R. The Quantum Theory of Light; OUP: Oxford, UK, 2000; p. 448. [Google Scholar]
- Agarwal, G.S. Quantum Optics; Cambridge University Press: Cambridge, UK, 2013; p. 491. [Google Scholar]
- Leonhardt, U. Quantum physics of simple optical instruments. Rep. Prog. Phys. 2003, 66, 1207–1249. [Google Scholar] [CrossRef]
- Shen, Y. The Principles of Nonlinear Optics; Wiley: New York, NY, USA, 1984. [Google Scholar]
- Ou, Z.Y.J. Multi-Photon Quantum Interference; Springer: New York, NY, USA, 2007; p. 268. [Google Scholar]
- Makarov, D. Theory for the Beam Splitter in Quantum Optics: Quantum Entanglement of Photons and Their Statistics, HOM Effect. Mathematics 2022, 10, 4794. [Google Scholar] [CrossRef]
- Polino, E.; Valeri, M.; Spagnolo, N.; Sciarrino, F. Photonic Quantum Metrology. AVS Quantum Sci. 2020, 2, 024703. [Google Scholar] [CrossRef]
- Tan, S.H.; Rohde, P. The resurgence of the linear optics quantum interferometer–recent advances and applications. Rev. Phys. 2019, 4, 100030. [Google Scholar] [CrossRef]
- Zeilinger, A. General properties of lossless beam splitters in interferometry. Am. J. Phys. 1981, 49, 882. [Google Scholar] [CrossRef]
- Fearn, H.; Loudon, R. Quantum theory of the lossless beam splitter. Optics Commun. 1987, 64, 485–490. [Google Scholar] [CrossRef]
- Campos, R.; Saleh, B.; Teich, M. Quantum-mechanical lossless beam splitter: SU(2) symmetry and photon statistics. Phys. Rev. A 1989, 40, 1371. [Google Scholar] [CrossRef]
- Luis, A.; Sfinchez-Soto, L. A quantum description of the beam splitter. Quantum Semiclass. Opt. 1995, 7, 153–160. [Google Scholar] [CrossRef]
- Makarov, D.N. Theory of a frequency-dependent beam splitter in the form of coupled waveguides. Sci. Rep. 2021, 11, 5014. [Google Scholar] [CrossRef]
- Knill, E.; Laflamme, R.; Milburn, G.J. A Scheme for Efficient Quantum Computation With Linear Optics. Nature 2001, 409, 46–52. [Google Scholar]
- Hong, C.; Ou, Z.; Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 1987, 59, 2044–2046. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.W.; Chen, Z.; Lu, C.Y.; Weinfurter, H.; Zeilinger, A.; Zukowski, M. Multiphoton entanglement and interferometry. Rev. Mod. Phys. 2012, 84, 777. [Google Scholar] [CrossRef]
- Sangouard, N.; Simon, C.; de Riedmatten, H.; Gisin, N. Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 2011, 83, 33. [Google Scholar] [CrossRef]
- Makarov, D. Theory of HOM interference on coupled waveguides. Optics Lett. 2020, 45, 6322–6325. [Google Scholar] [CrossRef] [PubMed]
- Makarov, D. Fluctuations in the detection of the HOM effect. Sci. Rep. 2020, 10, 20124. [Google Scholar] [CrossRef]
- Harris, N.C.; Steinbrecher, G.R.; Prabhu, M.; Lahini, Y.; Mower, J.; Bunandar, D.; Chen, C.; Wong, F.N.C.; Baehr-Jones, T.; Hochberg, M.; et al. Quantum transport simulations in a programmable nanophotonic processor. Nat. Photonics 2017, 11, 447–452. [Google Scholar] [CrossRef]
- Tambasco, J.L.; Corrielli, G.; Chapman, R.J.; Crespi, A.; Zilberberg, O.; Osellame, R.; Peruzzo, A. Quantum interference of topological states of light. Sci. Adv. 2018, 4, eaat3187. [Google Scholar] [CrossRef]
- Pezze, L.; Smerzi, A.; Oberthaler, M.K.; Schmied, R.; Treutlein, P. Quantum metrology with nonclassical states of atomic ensembles. Rev. Mod. Phys. 2018, 90, 035005. [Google Scholar] [CrossRef]
- Weedbrook, C.; Pirandola, S.; Garcia-Patron, R.; Cerf, N.J.; Ralph, T.C.; Shapiro, J.H.; Lloyd, S. Gaussian quantum information. Rev. Mod. Phys. 2012, 84, 621. [Google Scholar] [CrossRef]
- Tischler, N.; Rockstuhl, C.; Slowik, K. Quantum Optical Realization of Arbitrary Linear Transformations Allowing for Loss and Gain. Phys. Rev. X 2018, 8, 021017. [Google Scholar] [CrossRef]
- Hartmann, M. Quantum simulation with interacting photons. J. Opt. 2016, 18, 104005. [Google Scholar] [CrossRef]
- Bromberg, Y.; Lahini, Y.; Morandotti, R.; Silberberg, Y. Quantum and Classical Correlations in Waveguide Lattices. Phys. Rev. Lett. 2009, 102, 253904. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makarov, D.; Gusarevich, E.; Makarova, K. Nonlinear Scattering Matrix in Quantum Optics. Mathematics 2023, 11, 4657. https://doi.org/10.3390/math11224657
Makarov D, Gusarevich E, Makarova K. Nonlinear Scattering Matrix in Quantum Optics. Mathematics. 2023; 11(22):4657. https://doi.org/10.3390/math11224657
Chicago/Turabian StyleMakarov, Dmitry, Eugeny Gusarevich, and Ksenia Makarova. 2023. "Nonlinear Scattering Matrix in Quantum Optics" Mathematics 11, no. 22: 4657. https://doi.org/10.3390/math11224657
APA StyleMakarov, D., Gusarevich, E., & Makarova, K. (2023). Nonlinear Scattering Matrix in Quantum Optics. Mathematics, 11(22), 4657. https://doi.org/10.3390/math11224657