Formulation of a T-Matrix Approach for a Piecewise-Homogeneous Anisotropic Medium Excited by a Spherical Sound Wave †
Abstract
:1. Introduction
2. Mathematical Formulation
3. Exact Solution of the Direct Problem
3.1. Source Located on the z-Axis
3.2. Source at an Arbitrary Location
4. Homogeneous Anisotropic Scatterers
5. Conclusions and Future Work Directions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Fundamentals of Dyadics
Appendix B. Anisotropic Norm
Appendix C. Separation of Variables
Appendix D. Transition Matrices
References
- Biot, M.A. Theory of Stress-Strain Relations in Anisotropic Viscoelasticity and Relaxation Phenomena. J. Appl. Phys. 1954, 25, 1385–1391. [Google Scholar] [CrossRef]
- Biot, M.A. Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. I. Low-Frequency Range. J. Acoust. Soc. Am. 1956, 28, 168–178. [Google Scholar] [CrossRef]
- Truesdell, C. Rational mechanics of materials. In Six Lectures on Modern Natural Philosophy; Springer: Berlin/Heidelberg, Germany, 1966; pp. 1–22. [Google Scholar]
- Jaeger, K.H.; Tveito, A. Deriving the Bidomain Model of Cardiac Electrophysiology From a Cell-Based Model; Properties and Comparisons. Front. Physiol. 2022, 12, 811029. [Google Scholar] [CrossRef] [PubMed]
- Kouroublakis, M.; Zouros, G.P.; Tsitsas, N.L. An Auxiliary-Current Vector Norm Method for Computing the Cutoff Wavenumbers of Anisotropic Waveguide. IEEE Trans. Microw. Theory Tech. 2023, 71, 4738–4748. [Google Scholar] [CrossRef]
- Lakhtakia, A.; Tsitsas, N.L.; Alkhoori, H.M. Theory of Perturbation of Electrostatic Field by an Anisotropic Dielectric Sphere. Q. J. Mech. Appl. Math. 2021, 74, 467–490. [Google Scholar] [CrossRef]
- Tsitsas, N.L.; Alkhoori, H.M.; Lakhtakia, A. Theory of Perturbation of Electrostatic Field by a Coated Anisotropic Dielectric Sphere. Q. J. Mech. Appl. Math. 2023, 74, hbad005. [Google Scholar] [CrossRef]
- Martinez, J.P.P.; Dazel, O.; Goransson, P.; Cuenca, J. Acoustic analysis of anisotropic poroelastic multilayered systems. J. Appl. Phys. 2016, 119, 084907. [Google Scholar] [CrossRef]
- Sharma, M.D. Three-dimensional wave propagation in a general anisotropic poroelastic medium: Phase velocity, group velocity and polarization. Geophys. J. Int. 2004, 156, 329–344. [Google Scholar] [CrossRef]
- Naumenko, N.F.; Yushkov, K.B.; Molchanov, V.Y. Extreme acoustic anisotropy in crystals visualized by diffraction tensor. Eur. Phys. J. Plus 2021, 136, 95. [Google Scholar] [CrossRef]
- Boulanger, P.; Hayes, M. Acoustic axes for elastic waves in crystals: Theory and applications. Proc. R. Soc. A 1998, 454, 2323–2346. [Google Scholar] [CrossRef]
- Alshits, V.I.; Lothe, J. Acoustic axes in trigonal crystals. Wave Motion 2006, 43, 177–192. [Google Scholar] [CrossRef]
- Wang, R.R.W.; Bohn, J.L. Anisotropic acoustics in dipolar Fermi gases. Phys. Rev. A 2023, 107, 033321. [Google Scholar] [CrossRef]
- Tretyakov, D.; Belyaev, A.; Shaposhnikov, N. Acoustic anisotropy and localization of plastic deformation in aluminum alloys. Mater. Today Proc. 2020, 30, 413–416. [Google Scholar] [CrossRef]
- Belyaev, A.K.; Lobachev, A.M.; Modestov, V.S.; Pivkov, A.V.; Polyanskii, V.A.; Semenov, A.S.; Tret’yakov, D.A.; Shtukin, L.V. Estimating the Plastic Strain with the Use of Acoustic Anisotropy. Mech. Solids 2016, 51, 606–611. [Google Scholar] [CrossRef]
- Collino, R.R.; Ray, T.R.; Fleming, R.C.; Sasaki, C.H.; Haj-Hariri, H.; Begley, M.R. Acoustic field controlled patterning and assembly of anisotropic particles. Extrem. Mech. Lett. 2015, 5, 37–46. [Google Scholar] [CrossRef]
- Antman, S.S.; Ting, T.C.T. Anisotropy Consistent with Spherical Symmetry in Continuum Mechanics. J. Elast. 2001, 62, 85–93. [Google Scholar] [CrossRef]
- Karadima, A.; Dassios, G. Time harmonic acoustic scattering in anisotropic media. Math. Meth. Appl. Sci. 2005, 28, 1383–1401. [Google Scholar]
- Bonnet, M.; Cakoni, F. Analysis of topological derivative as a tool for qualitative identification. Inverse Probl. 2019, 35, 104007. [Google Scholar] [CrossRef]
- Sommerfeld, A. Partial Differential Equations in Physics; Academic Press: Cambridge, MA, USA, 1949. [Google Scholar]
- Stevenson, R.C. Green’s function for the Helmholtz equation of a scalar wave in an anisotropic halfspace. SIAM J. Appl. Math. 1990, 50, 199–215. [Google Scholar] [CrossRef]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions; Courier Corporation: Dover, NY, USA, 1965. [Google Scholar]
- Tsitsas, N.L.; Athanasiadis, C. Point source excitation of a layered sphere: Direct and far-field inverse scattering problems. Q. J. Mech. Appl. Math. 2008, 61, 549–580. [Google Scholar] [CrossRef]
- Colton, D.; Kress, R. Inverse Acoustic and Electromagnetic Scattering; Springer: New York, NY, USA, 1994. [Google Scholar]
- Kalogeropoulos, A.; Tsitsas, N.L. Excitation of a layered sphere by N acoustic point sources: Exact solutions, low-frequency approximations and inverse problems. Q. Appl. Math. 2023, 81, 141–173. [Google Scholar] [CrossRef]
- Prokopiou, P.; Tsitsas, N.L. Direct and inverse low-frequency acoustic excitation of a layered sphere by an arbitrarily positioned point source. Math. Methods Appl. Sci. 2016, 41, 1040–1046. [Google Scholar] [CrossRef]
- Morse, P.M.; Feshbach, H. Methods of Theoretical Physics I; McGraw-Hill: New York, NY, USA, 1953. [Google Scholar]
- Carothers, N.L. Real Analysis; Cambridge University Press: New York, NY, USA, 2000. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalogeropoulos, A.; Tsitsas, N.L. Formulation of a T-Matrix Approach for a Piecewise-Homogeneous Anisotropic Medium Excited by a Spherical Sound Wave. Mathematics 2023, 11, 4618. https://doi.org/10.3390/math11224618
Kalogeropoulos A, Tsitsas NL. Formulation of a T-Matrix Approach for a Piecewise-Homogeneous Anisotropic Medium Excited by a Spherical Sound Wave. Mathematics. 2023; 11(22):4618. https://doi.org/10.3390/math11224618
Chicago/Turabian StyleKalogeropoulos, Andreas, and Nikolaos L. Tsitsas. 2023. "Formulation of a T-Matrix Approach for a Piecewise-Homogeneous Anisotropic Medium Excited by a Spherical Sound Wave" Mathematics 11, no. 22: 4618. https://doi.org/10.3390/math11224618
APA StyleKalogeropoulos, A., & Tsitsas, N. L. (2023). Formulation of a T-Matrix Approach for a Piecewise-Homogeneous Anisotropic Medium Excited by a Spherical Sound Wave. Mathematics, 11(22), 4618. https://doi.org/10.3390/math11224618