A Dynamical Model with Time Delay for Risk Contagion
Abstract
1. Introduction
1.1. Contagion Risk in the Financial Sector
1.2. Supply Chain Finance and Other Transmission Channels
1.3. Credit Channel Contagion
1.4. Our Contribution
2. Time-Delayed Dynamics
- Susceptible firms: This refers to some entities with lower risk that are vulnerable to infection by other firms with high risk, and therefore the possibility of becoming a high risk firm increase;
- Infected firms: This refers to firms which are infectious, whose risk is extremely high and who can infect other firms;
- Recovered firms: This refers to firms with the capability of risk control after infection, and which can keep their risk at a low level and be not infectious.
2.1. Positivity of Solutions
2.2. The Existence of Steady States
3. Steady-State Stability
3.1. Free-Risk Steady-State Stability
- in the case when , we get
- in the opposite case when , we have
3.2. Endemic Steady-State Stability
3.3. Discussion
4. Numerical Simulation: The Case Study of Food Sector for the Emilia Romagna Italian Region
- immunity is set at and incubation gets different lengths as ;
- immunity is set at and incubation gets different lengths as .
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Evaluating the History Function I0 (·)
- n = 7; P = polyfit([-9:1:0],V,n);
- m = 100; t = linspace(-9,0,m); I0 = polyval(P,t);
- plot(t,I0,’r–’,[-9:1:0],V,’ok’,[-9:1:0],V,’*k’).
References
- Claessens, S.; Forbes, K. International Financial Contagion; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- May, R.M.; Levin, S.A.; Sugihara, G. Complex systems: Ecology for bankers. Nature 2008, 451, 893–895. [Google Scholar] [CrossRef]
- Garas, A.; Argyrakis, P.; Rozenblat, C. Worldwide spreading of economic crisis. New J. Phys. 2012, 12, 185–188. [Google Scholar] [CrossRef]
- Xie, X.; Shi, X.; Gu, J.; Xu, X. Examining the Contagion Effect of Credit Risk in a Supply Chain under Trade Credit and Bank Loan Offering. Omega 2023, 115, 102751. [Google Scholar] [CrossRef]
- Jiang, S.; Fan, H. Credit risk contagion coupling with sentiment contagion. Phys. A Stat. Mech. Its Appl. 2018, 512, 186–202. [Google Scholar] [CrossRef]
- Jorion, P.; Zhang, G. Credit contagion from counterparty risk. J. Financ. 2009, 64, 2053–2087. [Google Scholar] [CrossRef]
- Boido, C.; Aliano, M. Digital art and non-fungible-token: Bubble or revolution? Financ. Res. Lett. 2022. in Press. [Google Scholar] [CrossRef]
- Haldane, A.G.; May, R.M. Systemic risk in banking ecosystems. Nature 2011, 469, 351–355. [Google Scholar] [CrossRef] [PubMed]
- Roukny, T.; Bersini, H.; Pirotte, H.; Caldarelli, G.; Battiston, S. Default cascades in complex networks: Topology and systemic risk. Sci. Rep. 2013, 3, 2759. [Google Scholar] [CrossRef]
- Leonidova, A.V.; Rumyantsevb, E.L. Default contagion risks in Russian interbank market. Phys. A Stat. Mech. Its Appl. 2016, 451, 36–48. [Google Scholar] [CrossRef]
- Callon, M. Techno-economic Networks and Irreversibility. Sociol. Rev. 1990, 38, 132–161. [Google Scholar] [CrossRef]
- Babus, A. The formation of financial networks. Rand. J. Econ. 2016, 47, 239–272. [Google Scholar] [CrossRef]
- Battiston, S.; Caldarelli, G. Systemic risk in financial networks. J. Financ. Manag. Mark. Inst. 2013, 1, 129–154. [Google Scholar]
- Feinstein, Z. Financial contagion and asset liquidation strategies. Oper. Res. Lett. 2017, 45, 109–114. [Google Scholar] [CrossRef]
- Caldarelli, G.; Battiston, S.; Garlaschelli, D.; Catanzaro, M. Emergence of Complexity in Financial Networks; Ben-Naim, E., Frauenfelder, H., Toroczkai, Z., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 399–423. [Google Scholar]
- Aït-Sahalia, Y.; Cacho-Diaz, J.; Laeven, R.J.A. Modeling financial contagion using mutually exciting jump processes. J. Financ. Econ. 2015, 117, 585–606. [Google Scholar] [CrossRef]
- Barja, A.; Martínez, A.; Arenas, A.; Fleurquin, P.; Nin, J.; Ramasco, J.J.; Tomás, E. Assessing the risk of default propagation in interconnected sectoral financial networks. EPJ Data Sci. 2019, 8, 32. [Google Scholar] [CrossRef]
- Torri, G.; Radi, D.; Dvořáčková, H. Catastrophic and systemic risk in the non-life insurance sector: A micro-structural contagion approach. Financ. Res. Lett. 2022, 47, 102718. [Google Scholar] [CrossRef]
- Han, L. Controlling Default Contagion Through Small-World Networks. Procedia Comput. Sci. 2019, 154, 47–53. [Google Scholar] [CrossRef]
- Previati, A.D.; Aliano, M.; Galloppo, G.; Paimanova, V. Why do banks react differently to short-selling bans? Evidence from the Asia-Pacific area and the United States. Q. Rev. Econ. Financ. 2021, 80, 144–158. [Google Scholar] [CrossRef]
- Akerlof, G.A.; Shiller, R.J. Animal Spirits: How Human Psychology Drives the Economy, and Why It Matters for Global Capitalism; Princeton University: Princeton, NJ, USA, 2009. [Google Scholar]
- Adekoya, O.B.; Oliyide, J.A. Commodity and financial markets’ fear before and during COVID-19 pandemic: Persistence and causality analyses. Resour. Policy 2022, 76, 102598. [Google Scholar] [CrossRef]
- Giot, P. Relationships between implied volatility indexes and stock index returns. J. Portfolio Manag. 2005, 31, 92–100. [Google Scholar] [CrossRef]
- Economou, F.; Panagopoulos, Y.; Tsouma, E. Uncovering asymmetries in the relationship between fear and the stock market using a hidden-co-integration approach. Res. Int. Bus. Financ. 2018, 44, 459–470. [Google Scholar] [CrossRef]
- Chen, X.; Chiang, T.C. Empirical investigation of changes in policy uncertainty on stock returns- Evidence from China’s market. Res. Int. Bus. Financ. 2020, 53, 101183. [Google Scholar] [CrossRef]
- Filbeck, G.; Kumar, S.; Liu, J.; Zhao, X. Supply chain finance and financial contagion from disruptions evidence from the automobile industry. Int. J. Phys. Distrib. Logist. Manag. 2016, 46, 414–438. [Google Scholar] [CrossRef]
- Lian, Y. Financial distress and customer-supplier relationships. J. Corp. Financ. 2017, 43, 397–406. [Google Scholar] [CrossRef]
- Agca, S.; Babich, V.; Birge, J.R.; Wu, J. Credit shock propagation along supply chains: Evidence from the CDS market. Manag. Sci. 2021, 68, 6506–6538. [Google Scholar] [CrossRef]
- Barro, D.; Basso, A. Credit contagion in a network of firms with spatial interaction. Eur. J. Oper. Res. 2010, 205, 459–468. [Google Scholar] [CrossRef]
- Barreto, G.; Artes, F. Spatial correlation in credit risk and its improvement in credit scoring. Eur. J. Oper. Res. 2016, 249, 517–524. [Google Scholar]
- Calabrese, R.; Andreeva, G.; Ansell, J. ’Birds of a feather’ fail together: Exploring the nature of dependency in SME defaults. Risk Anal. 2019, 39, 71–84. [Google Scholar] [CrossRef]
- Maté-Sánchez-Val, M.; Lóopez-Hernandez, F.; Rodriguez Fuentes, C.C. Geographical factors and business failure: An empirical study from the Madrid metropolitan area. Econ. Model. 2018, 74, 275–283. [Google Scholar] [CrossRef]
- Shi, Q.; Sun, X.; Jiang, Y. Concentrated commonalities and systemic risk in China’s banking system: A contagion network approach. Int. Rev. Financ. Anal. 2022, 83, 102253. [Google Scholar] [CrossRef]
- Egloff, D.; Leippold, M.; Vanini, P. A simple model of credit contagion. J. Bank. Financ. 2007, 31, 2475–2492. [Google Scholar] [CrossRef]
- Hertzel, M.G.; Li, Z.; Officer, M.S.; Rodgers, K.J. Inter-firm linkages and the wealth effects of financial distress along the supply chain. J. Financ. Econ. 2008, 87, 374–387. [Google Scholar] [CrossRef]
- Escribano, E.; Maggi, M. Intersectoral default contagion: A multivariate Poisson autoregression analysis. Econ. Model. 2016, 82, 376–400. [Google Scholar] [CrossRef]
- Calabrese, R. Contagion effects of UK small business failures: A spatial hierarchical autoregressive model for binary data. Eur. J. Oper. Res. 2022, 305, 989–997. [Google Scholar] [CrossRef]
- Fanelli, V.; Maddalena, L. A nonlinear dynamic model for credit risk contagion. Math. Comput. Simul. 2020, 170, 45–58. [Google Scholar] [CrossRef]
- Xua, K.; Qianb, Q.; Xiec, X.; Zhoud, Z. Study on the contagion mechanism of associated credit risk with corporate senior executives’ alertness. Procedia Comput. Sci. 2022, 199, 207–214. [Google Scholar] [CrossRef]
- Dawes, J.H.P.; Souza, M.O. A derivation of Holling’s type I, II and III functional responses in predator–prey systems. J. Theor. Biol. 2013, 327, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Holling, C.S. The components of predation as revealed by a study of small-mammal predation of the European sawfly. Can. Entomol. 1959, 91, 293–320. [Google Scholar] [CrossRef]
- Holling, C.S. Some characteristics of simple types of predation and parasitism. Can. Entomol. 1959, 91, 385–398. [Google Scholar] [CrossRef]
- Baker, C.M.; Armsworth, P.R.; Lenhart, S.M. Handling overheads: Optimal multi-method invasive species control. Theor. Ecol. 2017, 10, 493–501. [Google Scholar] [CrossRef]
- Baker, C.M.; Diele, F.; Marangi, C.; Martiradonna, A.; Ragni, S. Optimal spatiotemporal effort allocation for invasive species removal incorporating a removal handling time and budget. Nat. Resour. Model. 2018, 31, e12190. [Google Scholar] [CrossRef]
- Marangi, C.; Casella, F.; Diele, F.; Lacitignola, D.; Martiradonna, A.; Provenzale, A.; Ragni, S. Mathematical tools for controlling invasive species in protected areas. In Mathematical Approach to Climate Change and Its Impacts; Springer: Berlin/Heidelberg, Germany, 2020; pp. 211–237. [Google Scholar]
- Marangi, C.; Martiradonna, A.; Ragni, S. Optimal resource allocation for spatiotemporal control of invasive species. Appl. Math. Comput. 2023, 439, 127614. [Google Scholar] [CrossRef]
- Kyrychko, Y.N.; Blyuss, K.B. Global properties of a delayed SIR model with temporary immunity and nonlinear incidence rate. Nonlinear Anal. Real World Appl. 2005, 6, 495–507. [Google Scholar] [CrossRef]
- Zhao, C.; Li, M.; Wang, J.; Ma, S. The mechanism of credit risk contagion among internet P2P lending platforms based on a SEIR model with time-lag. Res. Int. Bus. Financ. 2021, 57, 101407. [Google Scholar] [CrossRef]
- Diekmann, O.; Van Gils, S.A.; Lunel, S.M.; Walther, H.O. Delay Equations: Functional-, Complex-, and Nonlinear Analysis; Springer: Berlin/Heidelberg, Germany, 2012; Volume 110. [Google Scholar]
- Richard, J.P. Time-delay systems:an overview of some recent advances and open problems. Automatica 2003, 39, 1667–1694. [Google Scholar] [CrossRef]
- Li, B.; Kuang, Y. Simple food chain in a chemostat with distinct removal rates. J. Math. Anal. Appl. 2000, 242, 75–92. [Google Scholar] [CrossRef]
- Beretta, E.; Kuang, Y. Modeling and analysis of a marine bacteriophage infection with latency period. Nonlinear Anal. 2001, 2, 35–74. [Google Scholar] [CrossRef]
- Kuang, Y. Delay Differential Equations with Applications in Population Biology; Academic Press: NewYork, NJ, USA, 1993. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aliano, M.; Cananà, L.; Cestari, G.; Ragni, S. A Dynamical Model with Time Delay for Risk Contagion. Mathematics 2023, 11, 425. https://doi.org/10.3390/math11020425
Aliano M, Cananà L, Cestari G, Ragni S. A Dynamical Model with Time Delay for Risk Contagion. Mathematics. 2023; 11(2):425. https://doi.org/10.3390/math11020425
Chicago/Turabian StyleAliano, Mauro, Lucianna Cananà, Greta Cestari, and Stefania Ragni. 2023. "A Dynamical Model with Time Delay for Risk Contagion" Mathematics 11, no. 2: 425. https://doi.org/10.3390/math11020425
APA StyleAliano, M., Cananà, L., Cestari, G., & Ragni, S. (2023). A Dynamical Model with Time Delay for Risk Contagion. Mathematics, 11(2), 425. https://doi.org/10.3390/math11020425