A Computationally Efficient Distributed Framework for a State Space Adaptive Filter for the Removal of PLI from Cardiac Signals
Abstract
:1. Introduction
2. State Space Model of PLI
3. Methodology
3.1. SSLMSWAM Algorithm
3.2. Proposed Parallel Distributed System Model
Algorithm 1: Pseudocode of the proposed PD-SSLMSWAM |
Input: Output: Initialization: , , Compute through Equation (10) Compute Do in Parallel |
3.3. Computational Complexity
3.4. Performance Parameters
4. Results and Discussions
4.1. Qualitative Performance
4.2. Qualitative Performance
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- De Luna, A.B. Basic Electrocardiography: Normal and Abnormal ECG Patterns; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Bruce, E.N. Biomedical Signal Processing and Signal Modeling; Wiley: New York, NY, USA, 2001. [Google Scholar]
- Janson, C.M.; Shah, M.J.; Kennedy, K.F.; Iyer, V.R.; Sweeten, T.L.; Glatz, A.C.; Steven, J.M.; O’Byrne, M.L. Comparison of Outcomes of Pediatric Catheter Ablation by Anesthesia Strategy: A Report from the NCDR® IMPACT Registry. Circ. Arrhythmia Electrophysiol. 2021, 14, e009849. [Google Scholar] [CrossRef] [PubMed]
- Curila, K.; Jurak, P.; Halamek, J.; Prinzen, F.; Waldauf, P.; Karch, J.; Stros, P.; Plesinger, F.; Mizner, J.; Susankova, M.; et al. Ventricular activation pattern assessment during right ventricular pacing: Ultra-high-frequency ECG study. J. Cardiovasc. Electrophysiol. 2021, 32, 1385–1394. [Google Scholar] [CrossRef] [PubMed]
- ur Rehman, I.; Raza, H.; Razzaq, N.; Zaidi, T. Parallel Distributed Framework for State Space Adaptive Filter for Removal of PLI from Cardiac Signals. Int. J. Bioautomation 2021, 25, 249. [Google Scholar] [CrossRef]
- Curila, K.; Jurak, P.; Jastrzebski, M.; Prinzen, F.; Waldauf, P.; Halamek, J.; Vernooy, K.; Smisek, R.; Karch, J.; Plesinger, F.; et al. Left bundle branch pacing compared to left ventricular septal myocardial pacing increases interventricular dyssynchrony but accelerates left ventricular lateral wall depolarization. Heart Rhythm 2021, 18, 1281–1289. [Google Scholar] [CrossRef] [PubMed]
- Piskorowski, J. Powerline interference removal from ECG signal using notch filter with non-zero initial conditions. In Proceedings of the 2012 IEEE International Symposium on Medical Measurements and Applications Proceedings, Budapest, Hungary, 18–19 May 2012; pp. 1–3. [Google Scholar]
- Shaik, B.S.; Chakka, V.K.; Goli, S.; Reddy, A.S. Removal of narrowband interference (PLI in ECG signal) using ramanujan periodic transform (RPT). In Proceedings of the 2016 International Conference on Signal Processing and Communication (ICSC), Noida, India, 26–28 December 2016; pp. 233–237. [Google Scholar]
- Thomas, C.W.; Huebner, W.P.; Leigh, R.J. A low-pass notch filter for bioelectric signals. IEEE Trans. Biomed. Eng. 1988, 35, 496–498. [Google Scholar] [CrossRef] [PubMed]
- Van Alste, J.A.; Schilder, T. Removal of base-line wander and power-line interference from the ECG by an efficient FIR filter with a reduced number of taps. IEEE Trans. Biomed. Eng. 1985, 1052–1060. [Google Scholar] [CrossRef] [Green Version]
- Chavan, M.S.; Agarwala, R.; Uplane, M. Suppression of baseline wander and power line interference in ECG using digital IIR filter. Int. J. Circuits Syst. Signal Process. 2008, 2, 356–365. [Google Scholar]
- Pei, S.C.; Tseng, C.C. Elimination of AC interference in electrocardiogram using IIR notch filter with transient suppression. IEEE Trans. Biomed. Eng. 1995, 42, 1128–1132. [Google Scholar]
- Wang, J.; Ye, Y.; Pan, X.; Gao, X.; Zhuang, C. Fractional zero-phase filtering based on the Riemann–Liouville integral. Signal Process. 2014, 98, 150–157. [Google Scholar] [CrossRef]
- Kumar, A.; Ranganatham, R.; Komaragiri, R.; Kumar, M. Efficient QRS complex detection algorithm based on Fast Fourier Transform. Biomed. Eng. Lett. 2019, 9, 145–151. [Google Scholar] [CrossRef]
- Singh, P. Some Studies on a Generalized Fourier Expansion for Nonlinear and Nonstationary Time Series Analysis. Ph.D. Thesis, IIT Delhi, New Delhi, India, 2016. [Google Scholar]
- Shin, H.S.; Lee, C.; Lee, M. Ideal filtering approach on DCT domain for biomedical signals: Index blocked DCT filtering method (IB-DCTFM). J. Med. Syst. 2010, 34, 741–753. [Google Scholar] [CrossRef] [PubMed]
- Bahaz, M.; Benzid, R. Efficient algorithm for baseline wander and powerline noise removal from ECG signals based on discrete Fourier series. Australas. Phys. Eng. Sci. Med. 2018, 41, 143–160. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Joshi, S.D.; Patney, R.K.; Saha, K. The Fourier decomposition method for nonlinear and non-stationary time series analysis. Proc. R. Soc. A Math. Phys. Eng. Sci. 2017, 473, 20160871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, P.; Srivastava, P.K.; Patney, R.K.; Joshi, S.D.; Saha, K. Nonpolynomial spline based empirical mode decomposition. In Proceedings of the 2013 International Conference on Signal Processing and Communication (ICSC), Noida, India, 12–14 December 2013; pp. 435–440. [Google Scholar]
- Jain, P.; Pachori, R.B. An iterative approach for decomposition of multi-component non-stationary signals based on eigenvalue decomposition of the Hankel matrix. J. Frankl. Inst. 2015, 352, 4017–4044. [Google Scholar] [CrossRef]
- Singhal, A.; Singh, P.; Fatimah, B.; Pachori, R.B. An efficient removal of power-line interference and baseline wander from ECG signals by employing Fourier decomposition technique. Biomed. Signal Process. Control 2020, 57, 101741. [Google Scholar] [CrossRef]
- Agrawal, S.; Gupta, A. Fractal and EMD based removal of baseline wander and powerline interference from ECG signals. Comput. Biol. Med. 2013, 43, 1889–1899. [Google Scholar] [CrossRef]
- Rakshit, M.; Das, S. An improved EMD based ECG denoising method using adaptive switching mean filter. In Proceedings of the 2017 4th International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 2–3 February 2017; pp. 251–255. [Google Scholar]
- Sharma, R.R.; Pachori, R.B. Baseline wander and power line interference removal from ECG signals using eigenvalue decomposition. Biomed. Signal Process. Control 2018, 45, 33–49. [Google Scholar] [CrossRef]
- Guleria, R.; Kaur, R. Removing the power line interference from ECG signal using Kalman least mean square filter. In Proceedings of the 2016 International Conference on Signal Processing, Communication, Power and Embedded System (SCOPES), Paralakhemundi, India, 3–5 October 2016; pp. 1151–1157. [Google Scholar]
- Jiao, Y.; Cheung, R.Y.; Mok, M.P. Modified log-lms adaptive filter with low signal distortion for biomedical applications. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 August–1 September 2012; pp. 5210–5213. [Google Scholar]
- Widrow, B.; Glover, J.R.; McCool, J.M.; Kaunitz, J.; Williams, C.S.; Hearn, R.H.; Zeidler, J.R.; Dong, J.E.; Goodlin, R.C. Adaptive noise cancelling: Principles and applications. Proc. IEEE 1975, 63, 1692–1716. [Google Scholar] [CrossRef]
- Glover, J. Adaptive noise canceling applied to sinusoidal interferences. IEEE Trans. Acoust. Speech Signal Process. 1977, 25, 484–491. [Google Scholar] [CrossRef]
- Martens, S.M.; Mischi, M.; Oei, S.G.; Bergmans, J.W. An improved adaptive power line interference canceller for electrocardiography. IEEE Trans. Biomed. Eng. 2006, 53, 2220–2231. [Google Scholar] [CrossRef]
- Satija, U.; Ramkumar, B.; Manikandan, M.S. Low-complexity detection and classification of ECG noises for automated ECG analysis system. In Proceedings of the 2016 International Conference on Signal Processing and Communications (SPCOM), Bangalore, India, 12–15 June 2016; pp. 1–5. [Google Scholar]
- Razzaq, N.; Butt, M.; Salman, M.; Ali, R.; Sadiq, I.; Munawar, K.; Zaidi, T. An intelligent adaptive filter for fast tracking and elimination of power line interference from ECG signal. In Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems, Porto, Portugal, 20–22 June 2013; pp. 251–256. [Google Scholar]
- Razzaq, N.; Sheikh, S.A.A.; Salman, M.; Zaidi, T. An intelligent adaptive filter for elimination of power line interference from high resolution electrocardiogram. IEEE Access 2016, 4, 1676–1688. [Google Scholar] [CrossRef]
- Tahir, S.; Raja, M.M.; Razzaq, N.; Mirza, A.; Khan, W.Z.; Kim, S.W.; Zikria, Y.B. Extended Kalman Filter-Based power line interference canceller for electrocardiogram signal. Big Data 2021, 10, 34–53. [Google Scholar] [CrossRef]
- Razzaq, N.; Ullah, E.; Salman, M.; Zaidi, T. State space least mean square adaptive filter for power line interference removal from cardiac signals. In Proceedings of the 2019 IEEE 7th Conference on Systems, Process and Control (ICSPC), Melaka, Malaysia, 13–14 December 2019; pp. 216–221. [Google Scholar]
- De La Rosa, F. Harmonics and Power Systems; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Malik, M.B. State-space recursive least-squares: Part I. Signal Process. 2004, 84, 1709–1718. [Google Scholar] [CrossRef]
- Malik, M.B.; Salman, M. State-space least mean square with adaptive memory. In Proceedings of the TENCON 2005-2005 IEEE Region 10 Conference, Melbourne, VIC, Australia, 21–24 November 2005; pp. 1–6. [Google Scholar]
- Haykin, S.S. Adaptive Filter Theory; Pearson Education India: Delhi, India, 2005. [Google Scholar]
- Salman, M. Adaptive Estimation Using State-Space Methods. Ph.D. Thesis, National University of Sciences and Technology, Islamabad, Pakistan, 2009. [Google Scholar]
- Malik, M.B.; Salman, M. State-space least mean square. Digit. Signal Process. 2008, 18, 334–345. [Google Scholar] [CrossRef]
- Liu, H.; Li, Y.; Zhou, Y.; Jing, X.; Truong, T.K. Joint power line interference suppression and ECG signal recovery in transform domains. Biomed. Signal Process. Control. 2018, 44, 58–66. [Google Scholar] [CrossRef]
- Soedirdjo, S.D.; Ullah, K.; Merletti, R. Power line interference attenuation in multi-channel sEMG signals: Algorithms and analysis. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 3823–3826. [Google Scholar]
- Armed Forces Institute of Cardiology and National Institute of Heart Diseases. Available online: https://afic.gov.pk (accessed on 27 November 2022).
Eq.# | Operation | Multiplications | Additions |
---|---|---|---|
(26.1) | |||
(26.2) | n | n | |
(26.3) | |||
n | – | ||
n | |||
(26.4) | 1 | 1 | |
n | |||
– | |||
– | |||
(26.5) | – | n | |
Total |
Eq.# | Operation | Multiplications | Additions |
---|---|---|---|
(27.1) | |||
(27.2) | |||
n | |||
n | 1 | ||
1 | – | ||
(27.3) | n | – | |
Total |
Algorithm | Multiplications | Additions |
---|---|---|
Sequentially operated SSLMSWAM | ||
SSNLMS | ||
Proposed PD–SSLMSWAM |
Cardiac Data | No. of Recordings | Proposed PD–SSLMSWAM | Sequential SSLMSWAM | SSNLLMS |
---|---|---|---|---|
Suppression Ratio | ||||
HRECG | 181 | |||
UHFECG | 360 | |||
IEGM | 230 | |||
Output SNR | ||||
HRECG | 181 | |||
UHFECG | 360 | |||
IEGM | 230 | |||
Correlation Coefficient | ||||
HRECG | 181 | |||
UHFECG | 360 | |||
IEGM | 230 | |||
Mean Square Error | ||||
HRECG | 181 | |||
UHFECG | 360 | |||
IEGM | 230 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rehman, I.u.; Raza, H.; Razzaq, N.; Frnda, J.; Zaidi, T.; Abbasi, W.; Anwar, M.S. A Computationally Efficient Distributed Framework for a State Space Adaptive Filter for the Removal of PLI from Cardiac Signals. Mathematics 2023, 11, 350. https://doi.org/10.3390/math11020350
Rehman Iu, Raza H, Razzaq N, Frnda J, Zaidi T, Abbasi W, Anwar MS. A Computationally Efficient Distributed Framework for a State Space Adaptive Filter for the Removal of PLI from Cardiac Signals. Mathematics. 2023; 11(2):350. https://doi.org/10.3390/math11020350
Chicago/Turabian StyleRehman, Inam ur, Hasan Raza, Nauman Razzaq, Jaroslav Frnda, Tahir Zaidi, Waseem Abbasi, and Muhammad Shahid Anwar. 2023. "A Computationally Efficient Distributed Framework for a State Space Adaptive Filter for the Removal of PLI from Cardiac Signals" Mathematics 11, no. 2: 350. https://doi.org/10.3390/math11020350
APA StyleRehman, I. u., Raza, H., Razzaq, N., Frnda, J., Zaidi, T., Abbasi, W., & Anwar, M. S. (2023). A Computationally Efficient Distributed Framework for a State Space Adaptive Filter for the Removal of PLI from Cardiac Signals. Mathematics, 11(2), 350. https://doi.org/10.3390/math11020350