Properties of a Special Holomorphic Function Linked with a Generalized Multiplier Transformation
Abstract
:1. Introduction
2. Main Results
- (i) is continuous in ; (ii) , ; and (iii) , with .
3. Consequences
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alexander, J.W. Functions which map the interior of the unit circle upon simple regions. Ann. Math. 1915, 17, 12–22. [Google Scholar] [CrossRef]
- Bernardi, S.D. Convex and starlike univalent functions. Trans. Am. Math. Soc. 1969, 135, 429–446. [Google Scholar] [CrossRef]
- Libera, R.J. Some classes of regular univalent functions. Proc. Am. Math. Soc. 1965, 16, 755–758. [Google Scholar] [CrossRef]
- Ruscheweyh, S. New criteria for univalent functions. Proc. Am. Math. Soc. 1975, 49, 109–115. [Google Scholar] [CrossRef]
- Sălăgean, G.S. Subclasses of univalent functions. In Proceedings of the Complex Analysis—Fifth Romanian-Finnish Seminar: Part 1 Proceedings of the Seminar held in Bucharest, June 28–July 3, 1981; Springer: Berlin/Heidelberg, Germany, 1983; Volume 1013, pp. 362–372. [Google Scholar]
- Güney, H.Ö.; Oros, G.I.; Owa, S. An application of Sălăgean operator concerning starlike functions. Axioms 2022, 11, 50. [Google Scholar] [CrossRef]
- Al-Oboudi, F.M. On univalent functions defined by a generalized Salagean operator. Int. J. Math. Math. Sci. 2004, 27, 1429–1436. [Google Scholar] [CrossRef]
- Alb Lupaş, A. A special comprehensiv class of analytic functions defined by multiplier transformation. J. Comp. Anal. Appl. 2010, 12, 387–395. [Google Scholar]
- Cătaş, A. On certain class of p-valent functions defined by new multiplier transformations. In Proceedings of the International Symposium on Geometric Function Theory and Applications, Isambul, Turkey, 20–24 August 2007; pp. 241–250. [Google Scholar]
- Swamy, S.R. Inclusion properties of certain subclasses of analytic functions. Inter. Math. Forum. 2012, 7, 1751–1760. [Google Scholar]
- Swamy, S.R. Inclusion properties for certain subclasses of analytic functions defined by a generalized multiplier transformation. Inter. J. Math. Anal. 2012, 6, 1553–1564. [Google Scholar]
- Hohlov, Y.E. Convolution operators that preserve univalent functions. Ukrain. Mat. Zh. 1985, 37, 220–226. [Google Scholar]
- Frasin, B.A. A new differential operator of analytic functions involving binomial series. Bol. Soc. Paran. Mat. 2020, 38, 205–213. [Google Scholar] [CrossRef]
- Wanas, A.K. New differential operator for holomorphic functions. Earthline J. Math.Sci. 2019, 2, 527–537. [Google Scholar] [CrossRef]
- Noor, K.I. On new classes of integral operators. J. Nat. Geom. 1999, 16, 71–80. [Google Scholar]
- Noor, K.I.; Noor, M.A. On integral operators. J. Math. Anal. Appl. 1999, 238, 341–352. [Google Scholar] [CrossRef]
- Atshan, W.G.; Battor, A.H.; Abbas, A.F. Some sandwich theorems for meromorphic univalent funcions defined by a new integral operator. J. Interdiscip. Math. 2021, 24, 579–591. [Google Scholar] [CrossRef]
- Bhoosnurmath, S.S.; Swamy, S.R. Certain integrals for classes of univalen meromorphic functions. Ganita 1993, 44, 19–25. [Google Scholar]
- Páll-Szabó, Á.O.; Wanas, A.K. Coefficient estimates for some new classes of bi-Bazilevi functions of Ma-Minda type involving the Sălăgean integro-differential operator. Quaest. Math. 2021, 44, 495–502. [Google Scholar]
- Alb Lupaş, A.; Oros, G.I. Strong differential superordination results involving extended Sălăgean and Ruscheweyh operators. Mathematics 2021, 9, 2487. [Google Scholar] [CrossRef]
- Shivaprasad Kumar, S.; Taneja, H.C.; Ravichandran, V. Classes of multivalent functions defined by Dziok-Srivastava linear operator and multiplier transformation. Kyungpook Math. J. 2006, 46, 97–109. [Google Scholar]
- Páll-Szabó, Á.O.; Oro, G.I. Coefficien related studies for new classes of bi-univalen functions. Mathematics 2020, 8, 1110. [Google Scholar] [CrossRef]
- Alb Lupaş, A.; Oros, G.I. On special differential subordinations using fractional integral of subordinations of Sălăgean and Ruscheweyh operators. Symmetry 2021, 13, 1553. [Google Scholar] [CrossRef]
- Swamy, S.R. Some properties of analytic functions defined by a new multiplier transformation. J. Math. Comput. Sci. 2012, 2, 759–767. [Google Scholar]
- Aouf, M.K.; El-Ashwah, R.M.; El-Deeb, S.M. Some inequalities for certain p-valent functions involving extended multiplier transformations. Proc. Pak. Acad. Sci. 2009, 46, 217–221. [Google Scholar]
- Aouf, M.K.; Mostafa, A.O. On a subclasses of n-p-valent prestarlike functions. Comput. Math. Appl. 2008, 55, 851–861. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Suchitra, K.B.; Stephen, A.; Sivasubramanian, S. Inclusion and neighborhood properties of certain subclasses of multivalent functions of complex order. J. Inequal. Pure Appl. Math. 2006, 7, 8. [Google Scholar]
- Kamali, M.; Orhan, H. On a subclass of certain starlike functions with negative coefficients. Bull. Korean Math. Soc. 2004, 41, 53–71. [Google Scholar] [CrossRef]
- Orhan, H.; Kiziltunc, H. A generalization on subfamily of p-valent functions with negative coefficients. Appl. Math. Comput. 2004, 155, 521–530. [Google Scholar] [CrossRef]
- Bhoosnurmath, S.S.; Swamy, S.R. On certain classes of analytic functions. Soochow J. Math. 1994, 20, 1–9. [Google Scholar]
- Cho, N.E.; Srivastava, H.M. Argument estimates of certain analytic functions defined by a class of multiplier transformations. Math. Comput. Modeling. 2003, 37, 39–49. [Google Scholar] [CrossRef]
- Cho, N.E.; Kim, T.H. Multiplier transformations and strongly Close-to-Convex functions. Bull. Korean Math. Soc. 2003, 40, 399–410. [Google Scholar] [CrossRef]
- Uralegaddi, B.A.; Somanatha, C. Certain classes of univalent functions. In Current Topics in Analytic Function Theory; World Scientific Publishing: River Edge, NJ, USA, 1992; pp. 371–375. [Google Scholar]
- Miller, S.S.; Mocanu, P.T. Second order differential inequalities in the complex plane. J. Math. Anal. Appl. 1978, 65, 289–305. [Google Scholar] [CrossRef]
- Miller, S.S. Differential inequalities and Carathéodory function. Bull. Am. Math. Soc. 1975, 81, 79–81. [Google Scholar] [CrossRef]
- Oros, G.I.; Oros, G. Strong differential subordination. Turk. J. Math. 2009, 33, 249–257. [Google Scholar] [CrossRef]
- Oros, G.I.; Oros, G. Fuzzy differential subordination. Acta Universitatis Apluensis 2012, 30, 55–64. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Swamy, S.R.; Alb Lupaş, A.; Magesh, N.; Sailaja, Y. Properties of a Special Holomorphic Function Linked with a Generalized Multiplier Transformation. Mathematics 2023, 11, 4126. https://doi.org/10.3390/math11194126
Swamy SR, Alb Lupaş A, Magesh N, Sailaja Y. Properties of a Special Holomorphic Function Linked with a Generalized Multiplier Transformation. Mathematics. 2023; 11(19):4126. https://doi.org/10.3390/math11194126
Chicago/Turabian StyleSwamy, Sondekola Rudra, Alina Alb Lupaş, Nanjundan Magesh, and Yerragunta Sailaja. 2023. "Properties of a Special Holomorphic Function Linked with a Generalized Multiplier Transformation" Mathematics 11, no. 19: 4126. https://doi.org/10.3390/math11194126
APA StyleSwamy, S. R., Alb Lupaş, A., Magesh, N., & Sailaja, Y. (2023). Properties of a Special Holomorphic Function Linked with a Generalized Multiplier Transformation. Mathematics, 11(19), 4126. https://doi.org/10.3390/math11194126