On Erdélyi–Kober Fractional Operator and Quadratic Integral Equations in Orlicz Spaces
Abstract
:1. Introduction
2. Preliminaries
- 1.
- For every functions and , .
- 2.
- s.t. for all measurable on , we have .
- 3.
- , s.t. for all .
- 4.
- .
3. Erdélyi–Kober Fractional Integral Operator
4. Main Results
4.1. The Case of Orlicz Spaces
- (G1)
- s.t. for and we obtain .
- (C1)
- is a.e. nondecreasing on .
- (C2)
- verify Carathéodory conditions and are nondecreasing.
- (C3)
- and functions , and , such that
- (C4)
- Suppose that for a.e. , there exists , such that
- (C5)
- Suppose that, there is on the interval satisfying
4.2. The Case of Lebesgue Spaces
- (i)
- be a.e. nondecreasing functions on I.
- (ii)
- verify Carathéodory conditions and are nondecreasing.
- (iii)
- There exist and functions and such that
- (iv)
- For , there exists , fulfilling
5. Example
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; John Wiley & Sons: New York, NY, USA, 1993. [Google Scholar]
- Lakshmikantham, V.; Leela, S.; Vasundara Devi, J. Theory of Fractional Dynamic Systems; Cambridge Scientific Publishers: Cambridge, UK, 2009. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives; Gordon and Breach Science: Amsterdam, The Netherlands, 1993. [Google Scholar]
- Srivastava, H.M.; Saxena, R.K. Operators of fractional integration and their applications. Appl. Math. Comput. 2001, 118, 1–52. [Google Scholar] [CrossRef]
- Ahmad, B.; Nieto, J.J. Existence of solutions for anti-periodic boundary value problems involving fractional differential equations via Leray-Schauder degree theory. Topol. Methods Nonlinear Anal. 2010, 35, 295–304. [Google Scholar]
- Benchohra, M.; Henderson, J.; Ntouyas, S.K.; Ouahab, A. Existence results for fractional order functional differential equations with infinite delay. J. Math. Anal. Appl. 2008, 338, 1340–1350. [Google Scholar] [CrossRef]
- Zhang, S. Existence of positive solution for some class of nonlinear fractional differential equations. J. Math. Anal. Appl. 2003, 278, 136–148. [Google Scholar] [CrossRef]
- Hashem, H.H.; Zaki, M.S. Carthéodory theorem for quadratic integral equations of Erdélyi-Kober type. J. Fract. Calc. Appl. 2013, 4, 56–72. [Google Scholar]
- Wang, J.; Dong, X.; Zhou, Y. Analysis of nonlinear integral equations with Erdélyi-Kober fractional operator. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 3129–3139. [Google Scholar] [CrossRef]
- Xin, J.; Zhu, c.; Wang, J.; Chen, F. Nondecreasing solutions of fractional quadratic integral equations involving Erdélyi-Kober singular kernels. Topol. Methods Nonlinear Anal. 2014, 44, 73–88. [Google Scholar] [CrossRef]
- Hu, S.; Khavanin, M.; Zhuang, W. Integral equations arising in the kinetic theory of gases. Appl. Anal. 1989, 34, 261–266. [Google Scholar] [CrossRef]
- Kelly, C.T. Approximation of solutions of some quadratic integral equations in transport theory. J. Integral Equ. 1982, 4, 221–237. [Google Scholar]
- Chandrasekhar, S. Radiative Transfer; Dover Publications: New York, NY, USA, 1960. [Google Scholar]
- Krasnosel’skii, M.A.; Rutitskii, Y. Convex Functions and Orlicz Spaces; Nordhoff: Gröningen, The Netherlands, 1961. [Google Scholar]
- Majewski, W.A.; Labuschagne, L.E. On applications of Orlicz spaces to statistical physics. Ann. Henri Poincaré 2014, 15, 1197–1221. [Google Scholar] [CrossRef]
- Weeks, J.D.; Rice, S.A.; Kozak, J.J. Analytic approach to the theory of phase transitions. J. Chem. Phys. 1970, 52, 2416–2426. [Google Scholar] [CrossRef]
- Cichoń, M.; Metwali, M. On solutions of quadratic integral equations in Orlicz spaces. Mediterr. J. Math. 2015, 12, 901–920. [Google Scholar] [CrossRef]
- Cichoń, M.; Metwali, M. Existence of monotonic Lϕ-solutions for quadratic Volterra functional integral equations. Electron. J. Qual. Theory Differ. Equ. 2015, 13, 1–16. [Google Scholar] [CrossRef]
- Metwali, M. On perturbed quadratic integral equations and initial value problem with nonlocal conditions in Orlicz spaces. Demonstratio Math. 2020, 53, 86–94. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Metwali, M.; O’Regan, D. On existence and uniqueness of L1-solutions for quadratic integral equations via a Krasnoselskii-type fixed point theorem. Rocky Mountain J. Math. 2018, 48, 1743–1762. [Google Scholar] [CrossRef]
- Alsaadi, A.; Cichoń, M.; Metwali, M. Integrable solutions for Gripenberg-type equations with m-product of fractional operators and applications to initial value problems. Mathematics 2022, 10, 1172. [Google Scholar] [CrossRef]
- Metwali, M.; Mishra, V.N. On the measure of noncompactness in Lp(R+) and applications to a product of n-integral equations. Turkish J. Math. 2023, 47, 372–386. [Google Scholar] [CrossRef]
- Metwali, M. On some properties of Riemann-Liouville fractional operator in Orlicz spaces and applications to quadratic integral equations. Filomat 2022, 36, 6009–6020. [Google Scholar] [CrossRef]
- Metwali, M. Solvability of quadratic Hadamard-type fractional integral equations in Orlicz spaces. Rocky Mountain J. Math. 2023, 53, 531–540. [Google Scholar] [CrossRef]
- Cichoń, M.; Salem, H.A.H. On the solutions of Caputo-Hadamard Pettis-type fractional differential equations. RACSAM 2019, 113, 3031–3053. [Google Scholar] [CrossRef]
- Maligranda, L. Orlicz Spaces and Interpolation; Departamento de Matemática, Universidade Estadual de Campinas: Campinas, Brazil, 1989. [Google Scholar]
- Väth, M. Volterra and Integral Equations of Vector Functions; Marcel Dekker: New York, NY, USA; Basel, Switzerland, 2000. [Google Scholar]
- Banaś, J.; Goebel, K. Measures of Noncompactness in Banach Spaces; Commentationes Mathematicae Universitatis Carolinae: Praha, Czech Republic, 1980; Volume 21, pp. 131–143. [Google Scholar]
- Erzakova, N. Compactness in measure and measure of noncompactness. Sib. Math. J. 1997, 38, 926–928. [Google Scholar] [CrossRef]
- Pagnini, G. Erélyi-Kober fractional diffusion. Fract. Calc. Appl. Anal. 2012, 15, 117–127. [Google Scholar] [CrossRef]
- Chuong, N.M.; Hong, N.T.; Hung, H.D. Multilinear Hardy-Cesáro operator and commutator on the product of Morrey-Herz spaces. Anal. Math. 2017, 43, 547–565. [Google Scholar] [CrossRef]
- Sneddon, I.N. Mixed Boundary Value Problems in Potential Theory; North-Holand Publishing Co.: Amsterdam, The Netherlands, 1966. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Metwali, M.M.A.; Alsallami, S.A.M. On Erdélyi–Kober Fractional Operator and Quadratic Integral Equations in Orlicz Spaces. Mathematics 2023, 11, 3901. https://doi.org/10.3390/math11183901
Metwali MMA, Alsallami SAM. On Erdélyi–Kober Fractional Operator and Quadratic Integral Equations in Orlicz Spaces. Mathematics. 2023; 11(18):3901. https://doi.org/10.3390/math11183901
Chicago/Turabian StyleMetwali, Mohamed M. A., and Shami A. M. Alsallami. 2023. "On Erdélyi–Kober Fractional Operator and Quadratic Integral Equations in Orlicz Spaces" Mathematics 11, no. 18: 3901. https://doi.org/10.3390/math11183901
APA StyleMetwali, M. M. A., & Alsallami, S. A. M. (2023). On Erdélyi–Kober Fractional Operator and Quadratic Integral Equations in Orlicz Spaces. Mathematics, 11(18), 3901. https://doi.org/10.3390/math11183901