Asymptotic Normality of M-Estimator in Linear Regression Model with Asymptotically Almost Negatively Associated Errors
Abstract
:1. Introduction
2. Central Limit Theorem for AANA Random Sequences
- (A1) , ;
- (A2)
- (A3) there exists a strictly increasing natural numbers sequence , for , such that:
- (A4) ; Then,
- (1)
- (2)
- (3)
- For the of condition ().
3. Asymptotic Normality of M-Estimator
- ;
- there exists a finite function
- and
- there exists a such that is a -order positive definite matrix as and as ;
- ;
- as ;
4. Numerical Simulation
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chandra, T.K.; Ghosal, S. Extensions of the strong law of number of Marcinkiewicz and Zygmund for dependent variables. Acta Math. Hung. 1996, 71, 327–336. [Google Scholar] [CrossRef]
- Chandra, T.K.; Ghosal, S. The strong law of number for weighted averages under dependence assumptions. J. Theor. Probab. 1996, 19, 797–809. [Google Scholar] [CrossRef]
- Yuan, D.M.; An, J. Rosenthal type inequalities for asymptotically almost negatively associated random variables and applications. Sci. China Ser. A 2009, 52, 1887–1904. [Google Scholar] [CrossRef]
- Hu, X.P.; Fang, G.H.; Zhu, D.J. Strong convergence properties for asymptotically almost negatively associated sequence. Discret. Dyn. Nat. Soc. 2012, 2012, 562838. [Google Scholar] [CrossRef]
- Tang, X.F. Some strong laws of large numbers for weighted sums of asymptotically almost negatively associated random variables. J. Inequalities Appl. 2013, 2013, 4. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.S.; Hu, H.C. Weak consistency of M-estimator in linear regression model with asymptotically almost negatively associated errors. Commun. Stat.-Theory Methods 2020, 49, 2800–2816. [Google Scholar] [CrossRef]
- Huber, P.J. Robust estimation of a location parameter. Ann. Math. Statist. 1964, 35, 73–101. [Google Scholar] [CrossRef]
- Huber, P.J. Robust regression: Asymptotics, conjectures and Monte Carlo. Ann. Stat. 1973, 1, 799–821. [Google Scholar] [CrossRef]
- Chen, X.R.; Zhao, L.C. M-Methods in Linear Models; Shanghai Scientific and Technical Publishers: Shanghai, China, 1996. [Google Scholar]
- Huber, P.J.; Ronchetti, E.M. Robust Statistics, 2nd ed.; John Wiley & Sons: New Jersey, NJ, USA, 2009. [Google Scholar]
- Hu, H.C.; Zhang, Y.; Pan, X. Asymptotic normality of DHD estimators in a partially linear model. Stat. Pap. 2016, 57, 567–587. [Google Scholar] [CrossRef]
- Goryainov, A.V.; Goryainov, V.B. M-estimates of autoregression with random coefficients. Autom. Remote Control 2018, 79, 1409–1421. [Google Scholar] [CrossRef]
- Linke, Y.Y.; Sakhanenko, A.I. Conditions of asymptotic normality of one-step M-estimators. J. Math. Sci. 2018, 230, 95–111. [Google Scholar] [CrossRef]
- Wu, Q.Y. Strong consistency of M estimator in linear model for negatively associated samples. J. Syst. Sci. Complex. 2006, 19, 592–600. [Google Scholar] [CrossRef]
- Fan, J. Moderate deviations for M-estimators in linear model with-mixing errors. Acta Math. Sin. 2012, 28, 1275–1294. [Google Scholar] [CrossRef]
- Cui, H.J.; He, X.M.; Kai, W.N. M-estimation for linear models with spatially-correlated errors. Stat. Probab. Lett. 2004, 66, 383–393. [Google Scholar] [CrossRef]
- Muhammad, S.; Sohail, C.; Babar, I. On Some new ridge M-estimators for linear regression models under various error distributions. Pak. J. Stat. 2021, 37, 369–391. [Google Scholar]
- Muhammad, S.; Sohail, C.; Muhammad, A. New quantile based ridge M-estimator for linear regression models with multicollinearity and outliers. Commun. Stat. Simul. Comput. 2023, 52, 1418–1435. [Google Scholar]
- Su, C.; Chi, X. Some results on CLT for nonstationary NA sequences. Acta Math. Appl. Sin. 1998, 21, 9–21. [Google Scholar]
- Butzer, P.L.; Hahn, L. General theorems on rates of convergence in distribution of random variables. 1: General Limit Theorem. J. Multivar. Anal. 1978, 8, 181–201. [Google Scholar] [CrossRef]
- Yuan, D.M.; An, J. Laws of large numbers for Ces’aro alpha-integrable random variables under dependence condition AANA or AQSI. Acta Math. Sin. 2012, 28, 1103–1118. [Google Scholar] [CrossRef]
- Zhang, L.X. A functional central limit theorem for asymptotically negatively dependent random fields. Acta. Math. Hung. 2000, 86, 237–259. [Google Scholar] [CrossRef]
- Ledoux, M.; Talagrand, M. Probability in Banach Space; Springer: Berlin, Germany, 1991. [Google Scholar]
- Petrov, V.V. Limit Theorem for the Sum of Independent Random Variables; Science Publishers: Beijing, China, 1987. [Google Scholar]
- Rao, C.R.; Zhao, L.C. Approximation to the distribution of M-estimates in linear models by randomly weighted bootstrap. Sankhy Ser. A 1992, 54, 323–331. [Google Scholar]
- Anderson, P.K.; Gill, R.D. Cox’s regression model for counting processes: A large sample study. Ann. Stat. 1982, 15, 1100–1120. [Google Scholar] [CrossRef]
- Huber, P.J. Finite sample breakdown of M-and P-estimators. Ann. Stat. 1984, 12, 119–126. [Google Scholar] [CrossRef]
- Düker, M.C. Limit theorems in the context of multivariate long-range dependence. Stoch. Process. Appl. 2020, 130, 5394–5425. [Google Scholar] [CrossRef]
- Kouritzin, M.A.; Sounak, P. On almost sure limit theorems for heavy-tailed products of long-range dependent linear processes. Stoch. Process. Appl. 2022, 152, 208–232. [Google Scholar]
- Bai, S.Y.; Taqqu, M.S. Multivariate limit theorems in the context of long range dependence. J. Time Ser. Anal. 2013, 34, 717–743. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y. Asymptotic Normality of M-Estimator in Linear Regression Model with Asymptotically Almost Negatively Associated Errors. Mathematics 2023, 11, 3858. https://doi.org/10.3390/math11183858
Zhang Y. Asymptotic Normality of M-Estimator in Linear Regression Model with Asymptotically Almost Negatively Associated Errors. Mathematics. 2023; 11(18):3858. https://doi.org/10.3390/math11183858
Chicago/Turabian StyleZhang, Yu. 2023. "Asymptotic Normality of M-Estimator in Linear Regression Model with Asymptotically Almost Negatively Associated Errors" Mathematics 11, no. 18: 3858. https://doi.org/10.3390/math11183858
APA StyleZhang, Y. (2023). Asymptotic Normality of M-Estimator in Linear Regression Model with Asymptotically Almost Negatively Associated Errors. Mathematics, 11(18), 3858. https://doi.org/10.3390/math11183858