Sensor Selection and State Estimation of Continuous mAb Production Processes
Abstract
:1. Introduction
- 1
- A detailed consideration of sensor placement for continuous mAb production processes. The results provide guidelines for the sensor selection of similar continuous mAb production processes.
- 2
- Maximizing estimation accuracy in continuous mAb production processes through variable selection and simultaneous state and parameter estimations. The findings not only offer valuable insights into optimal variable selections for estimation, but also underscore the improvement in estimation accuracy achieved through simultaneous state and parameter estimations.
- 3
- A state estimation design in the framework of MHE for continuous mAb production processes that can extract the maximum information from the measurements.
2. System Description and Problem Formulation
2.1. System Description
2.1.1. Bioreactor Modeling
- 1
- The content within the bioreactor is homogeneously mixed.
- 2
- The enthalpy change resulting from cell death is negligible.
- 3
- The dilution effect is negligible.
- 4
- No heat is lost to the external environment.
- 5
- The temperature of the recycled stream and the reaction mixture are equivalent.
- 6
- The buffer tank level, volume of the bioreactor, and volume of the cell retention device remain constant throughout the process.
2.1.2. Mircofiltration
2.1.3. Buffer Tank Model
2.2. Problem Formulation
3. Sensor Selection for State Estimation
3.1. Construction of the Sensitivity Matrix
3.2. Procedure to Determine Minimum Number and Optimal Placement of Sensors
3.3. Minimum Sensor Set Selection
4. State Estimation Method
5. State Estimation Results
Simulation Settings
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lloyd, E.C.; Gandhi, T.N.; Petty, L.A. Monoclonal antibodies for COVID-19. JAMA 2021, 325, 1015. [Google Scholar] [CrossRef] [PubMed]
- Breedveld, F. Therapeutic monoclonal antibodies. Lancet 2000, 355, 735–740. [Google Scholar] [CrossRef] [PubMed]
- Gomis-Fons, J.; Schwarz, H.; Zhang, L.; Andersson, N.; Nilsson, B.; Castan, A.; Solbrand, A.; Stevenson, J.; Chotteau, V. Model-based design and control of a small-scale integrated continuous end-to-end mAb platform. Biotechnol. Prog. 2020, 36, e2995. [Google Scholar] [CrossRef] [PubMed]
- Keizer, R.J.; Huitema, A.D.; Schellens, J.H.; Beijnen, J.H. Clinical pharmacokinetics of therapeutic monoclonal antibodies. Clin. Pharmacokinet. 2010, 49, 493–507. [Google Scholar] [CrossRef]
- Rodrigues, M.E.; Costa, A.R.; Henriques, M.; Azeredo, J.; Oliveira, R. Technological progresses in monoclonal antibody production systems. Biotechnol. Prog. 2010, 26, 332–351. [Google Scholar] [CrossRef]
- Farid, S.S. Process economics of industrial monoclonal antibody manufacture. J. Chromatogr. B 2007, 848, 8–18. [Google Scholar] [CrossRef]
- Plumb, K. Continuous processing in the pharmaceutical industry: Changing the mind set. Chem. Eng. Res. Des. 2005, 83, 730–738. [Google Scholar] [CrossRef]
- Chopda, V.; Gyorgypal, A.; Yang, O.; Singh, R.; Ramachandran, R.; Zhang, H.; Tsilomelekis, G.; Chundawat, S.P.; Ierapetritou, M.G. Recent advances in integrated process analytical techniques, modeling, and control strategies to enable continuous biomanufacturing of monoclonal antibodies. J. Chem. Technol. Biotechnol. 2022, 97, 2317–2335. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, X.; Decardi-Nelson, B.; Song, B.; Zhang, A.; Liu, J.; Tao, S.; Cheng, J.; Liu, X.; Yu, D.; et al. SMPL: Simulated Industrial Manufacturing and Process Control Learning Environments. arXiv 2022, arXiv:2206.08851. [Google Scholar]
- Thakur, G.; Nikita, S.; Tiwari, A.; Rathore, A.S. Control of surge tanks for continuous manufacturing of monoclonal antibodies. Biotechnol. Bioeng. 2021, 118, 1913–1931. [Google Scholar] [CrossRef]
- Craven, S.; Whelan, J.; Glennon, B. Glucose concentration control of a fed-batch mammalian cell bioprocess using a nonlinear model predictive controller. J. Process Control 2014, 24, 344–357. [Google Scholar] [CrossRef]
- Lopes, J.A.; Costa, P.F.; Alves, T.P.; Menezes, J.C. Chemometrics in bioprocess engineering: Process analytical technology (PAT) applications. Chemom. Intell. Lab. Syst. 2004, 74, 269–275. [Google Scholar] [CrossRef]
- Khan, O.; Madhuranthakam, C.M.R.; Douglas, P.; Lau, H.; Sun, J.; Farrell, P. Optimized PID controller for an industrial biological fermentation process. J. Process Control 2018, 71, 75–89. [Google Scholar] [CrossRef]
- Bhaskar, A.; Barros, F.N.; Singh, R. Development and implementation of an advanced model predictive control system into continuous pharmaceutical tablet compaction process. Int. J. Pharm. 2017, 534, 159–178. [Google Scholar] [CrossRef]
- Singh, R.; Ierapetritou, M.; Ramachandran, R. System-wide hybrid MPC–PID control of a continuous pharmaceutical tablet manufacturing process via direct compaction. Eur. J. Pharm. Biopharm. 2013, 85, 1164–1182. [Google Scholar] [CrossRef]
- Sarna, S.; Patel, N.; Corbett, B.; McCready, C.; Mhaskar, P. Process-aware data-driven modelling and model predictive control of bioreactor for the production of monoclonal antibodies. Can. J. Chem. Eng. 2023, 101, 2677–2692. [Google Scholar] [CrossRef]
- Krausch, N.; Kim, J.W.; Lucia, S.; Groß, S.; Barz, T.; Neubauer, P.; Bournazou, M.N.C. Optimal operation of parallel mini-bioreactors in bioprocess development using multi-stage MPC. In Computer Aided Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2022; Volume 51, pp. 1069–1074. [Google Scholar]
- Abbate, T.; Sbarciog, M.; Dewasme, L.; Vande Wouwer, A. Experimental validation of a cascade control strategy for continuously perfused animal cell cultures. Processes 2020, 8, 413. [Google Scholar] [CrossRef]
- Narayanan, H.; Behle, L.; Luna, M.F.; Sokolov, M.; Guillén-Gosálbez, G.; Morbidelli, M.; Butté, A. Hybrid-ekf: Hybrid model coupled with extended Kalman filter for real-time monitoring and control of mammalian cell culture. Biotechnol. Bioeng. 2020, 117, 2703–2714. [Google Scholar] [CrossRef]
- Dewasme, L.; Vande Wouwer, A. Experimental validation of a full-horizon interval observer applied to hybridoma cell cultures. Int. J. Control 2020, 93, 2719–2728. [Google Scholar] [CrossRef]
- Bogaerts, P.; Hanus, R. Nonlinear and linearized full horizon state observers-application to bioprocesses. IFAC Proc. Vol. 2000, 33, 371–376. [Google Scholar] [CrossRef]
- Tebbani, S.; Le Brusquet, L.; Petre, E.; Selisteanu, D. Robust moving horizon state estimation: Application to bioprocesses. In Proceedings of the 2013 17th International Conference on System Theory, Control and Computing (ICSTCC), Sinaia, Romania, 11–13 October 2013; pp. 539–544. [Google Scholar]
- Hernández Rodríguez, T.; Posch, C.; Pörtner, R.; Frahm, B. Dynamic parameter estimation and prediction over consecutive scales, based on moving horizon estimation: Applied to an industrial cell culture seed train. Bioprocess Biosyst. Eng. 2021, 44, 793–808. [Google Scholar] [CrossRef]
- Raïssi, T.; Ramdani, N.; Candau, Y. Bounded error moving horizon state estimator for non-linear continuous-time systems: Application to a bioprocess system. J. Process Control 2005, 15, 537–545. [Google Scholar] [CrossRef]
- Rao, C.V.; Rawlings, J.B. Constrained process monitoring: Moving-horizon approach. AIChE J. 2002, 48, 97–109. [Google Scholar] [CrossRef]
- Joubert, D.; Stigter, J.; Molenaar, J. An efficient procedure to assist in the re-parametrization of structurally unidentifiable models. Math. Biosci. 2020, 323, 108328. [Google Scholar] [CrossRef]
- Liu, S.; Yin, X.; Pan, Z.; Liu, J. A sensitivity-based approach to optimal sensor selection for process networks. arXiv 2022, arXiv:2208.00584. [Google Scholar]
- Selişteanu, D.; Șendrescu, D.; Georgeanu, V.; Roman, M. Mammalian cell culture process for monoclonal antibody production: Nonlinear modelling and parameter estimation. BioMed Res. Int. 2015, 2015, 598721. [Google Scholar] [CrossRef]
- Juneja, M.; Nagar, S. Particle swarm optimization algorithm and its parameters: A review. In Proceedings of the 2016 International Conference on Control, Computing, Communication and Materials (ICCCCM), Allahabad, India, 21–22 October 2016; pp. 1–5. [Google Scholar]
- Poli, R.; Kennedy, J.; Blackwell, T. Particle swarm optimization: An overview. Swarm Intell. 2007, 1, 33–57. [Google Scholar] [CrossRef]
- Liu, J.; Gnanasekar, A.; Zhang, Y.; Bo, S.; Liu, J.; Hu, J.; Zou, T. Simultaneous state and parameter estimation: The role of sensitivity analysis. Ind. Eng. Chem. Res. 2021, 60, 2971–2982. [Google Scholar] [CrossRef]
- Faanes, A.; Skogestad, S. Buffer tank design for acceptable control performance. Ind. Eng. Chem. Res. 2003, 42, 2198–2208. [Google Scholar] [CrossRef]
- Papathanasiou, M.M.; Quiroga-Campano, A.L.; Steinebach, F.; Elviro, M.; Mantalaris, A.; Pistikopoulos, E.N. Advanced model-based control strategies for the intensification of upstream and downstream processing in mAb production. Biotechnol. Prog. 2017, 33, 966–988. [Google Scholar] [CrossRef] [PubMed]
- Kontoravdi, C.; Asprey, S.P.; Pistikopoulos, E.N.; Mantalaris, A. Application of global sensitivity analysis to determine goals for design of experiments: An example study on antibody-producing cell cultures. Biotechnol. Prog. 2005, 21, 1128–1135. [Google Scholar] [CrossRef]
- Kontoravdi, C.; Pistikopoulos, E.N.; Mantalaris, A. Systematic development of predictive mathematical models for animal cell cultures. Comput. Chem. Eng. 2010, 34, 1192–1198. [Google Scholar] [CrossRef]
- Jimenez del Val, I.; Fan, Y.; Weilguny, D. Dynamics of immature mAb glycoform secretion during CHO cell culture: An integrated modelling framework. Biotechnol. J. 2016, 11, 610–623. [Google Scholar] [CrossRef]
- Villiger, T.K.; Scibona, E.; Stettler, M.; Broly, H.; Morbidelli, M.; Soos, M. Controlling the time evolution of mAb N-linked glycosylation-Part II: Model-based predictions. Biotechnol. Prog. 2016, 32, 1135–1148. [Google Scholar] [CrossRef] [PubMed]
- Clincke, M.F.; Mölleryd, C.; Samani, P.K.; Lindskog, E.; Fäldt, E.; Walsh, K.; Chotteau, V. Very high density of Chinese hamster ovary cells in perfusion by alternating tangential flow or tangential flow filtration in WAVE bioreactor™—Part II: Applications for antibody production and cryopreservation. Biotechnol. Prog. 2013, 29, 768–777. [Google Scholar] [CrossRef]
- Contreras, S.; Kachroo, P.; Agarwal, S. Observability and sensor placement problem on highway segments: A traffic dynamics-based approach. IEEE Trans. Intell. Transp. Syst. 2015, 17, 848–858. [Google Scholar] [CrossRef]
- Naeem, M.; Xue, S.; Lee, D. Cross-entropy optimization for sensor selection problems. In Proceedings of the 2009 9th International Symposium on Communications and Information Technology, Bellevue, WA, USA, 20–24 July 2009; pp. 396–401. [Google Scholar]
- Renneberg, R.; Trott-Kriegeskorte, G.; Lietz, M.; Jäger, V.; Pawlowa, M.; Kaiser, G.; Wollenberger, U.; Schubert, F.; Wagner, R.; Schmid, R.; et al. Enzyme sensor-FIA-system for on-line monitoring of glucose, lactate and glutamine in animal cell cultures. J. Biotechnol. 1991, 21, 173–185. [Google Scholar] [CrossRef]
- Li, F.; Vijayasankaran, N.; Shen, A.; Kiss, R.; Amanullah, A. Cell culture processes for monoclonal antibody production. In mAbs; Taylor & Francis: Abingdon, UK, 2010; Volume 2, pp. 466–479. [Google Scholar]
- Maruthamuthu, M.K.; Rudge, S.R.; Ardekani, A.M.; Ladisch, M.R.; Verma, M.S. Process analytical technologies and data analytics for the manufacture of monoclonal antibodies. Trends Biotechnol. 2020, 38, 1169–1186. [Google Scholar] [CrossRef] [PubMed]
- Ibrir, S. Joint state and parameter estimation of non-linearly parameterized discrete-time nonlinear systems. Automatica 2018, 97, 226–233. [Google Scholar] [CrossRef]
- Stroud, J.R.; Katzfuss, M.; Wikle, C.K. A Bayesian adaptive ensemble Kalman filter for sequential state and parameter estimation. Mon. Weather Rev. 2018, 146, 373–386. [Google Scholar] [CrossRef]
- Kravaris, C.; Hahn, J.; Chu, Y. Advances and selected recent developments in state and parameter estimation. Comput. Chem. Eng. 2013, 51, 111–123. [Google Scholar] [CrossRef]
- Allgöwer, F.; Badgwell, T.A.; Qin, J.S.; Rawlings, J.B.; Wright, S.J. Nonlinear predictive control and moving horizon estimation—An introductory overview. In Advances in Control; Springer: London, UK, 1999; pp. 391–449. [Google Scholar]
- Bo, S.; Sahoo, S.R.; Yin, X.; Liu, J.; Shah, S.L. Parameter and state estimation of one-dimensional infiltration processes: A simultaneous approach. Mathematics 2020, 8, 134. [Google Scholar] [CrossRef]
- Yin, X.; Liu, J. Event-triggered state estimation of linear systems using moving horizon estimation. IEEE Trans. Control Syst. Technol. 2020, 29, 901–909. [Google Scholar] [CrossRef]
Parameter | Unit | Value | Parameter | Unit | Value |
mM | J/mol | ||||
h | g/L | ||||
mM | J/(g C) | ||||
mM | U | J/(h C) | |||
mM | C | ||||
mM | mmol/cell/min | ||||
n | − | 2 | mM L/cell/min | ||
mmol/mmol | - | 92% | |||
mmol/mmol | - | 20% | |||
cell/mmol | L | ||||
cell/mmol | L | ||||
mM | 4.0 | h | 15 | ||
min | D | 5 | |||
mg/(cell· h) | |||||
Input | Unit | Value | Input | Unit | Value |
L/min | mM | ||||
L/min | mM | ||||
L/min | C | ||||
L/min | L/min |
State | Unit | Definition |
---|---|---|
cell/L | Concentration of viable cells in bioreactor | |
cell/L | Total concentration of cells in bioreactor | |
mM | Glucose concentration in bioreactor | |
mM | Glutamine concentration in bioreactor | |
mM | Lactate concentration in bioreactor | |
mM | Ammonia concentration in bioreactor | |
mg/L | mAb concentration in bioreactor | |
cell/L | Concentration of viable cells in cell separator | |
cell/L | Total concentration of cells in cell separator | |
mM | Glucose concentration in cell separator | |
mM | Glutamine concentration in cell separator | |
mM | Lactate concentration in cell separator | |
mM | Ammonia concentration in cell separator | |
mg/L | mAb concentration in cell separator | |
T | C | Temperature of bioreactor mixture |
c | mg/L | mAb concentration in buffer tank |
m | Degree | Sensor | |||
16 | {} | {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16} | 16 | 64.025 | None |
15 | {2} | {1,3,4,5,6,7,8,9,10,11,12,13,14,15,16} | 16 | 61.994 | 2 |
14 | {2,1} | {3,4,5,6,7,8,9,10,11,12,13,14,15,16} | 16 | 59.894 | 1 |
13 | {2,1,3} | {4,5,6,7,8,9,10,11,12,13,14,15,16} | 16 | 57.717 | 3 |
12 | {2,1,3,7} | {4,5,6,8,9,10,11,12,13,14,15,16} | 16 | 55.255 | 7 |
11 | {2,1,3,7,14} | {4,5,6,8,9,10,11,12,13,15,16} | 16 | 53.096 | 14 |
10 | {2,1,3,7,14,6} | {4,5,8,9,10,11,12,13,15,16} | 16 | 50.628 | 6 |
9 | {2,1,3,7,14,6,15} | {4,5,8,9,10,11,12,13,16} | 16 | 48.032 | 15 |
8 | {2,1,3,7,14,6,15,5} | {4,8,9,10,11,12,13,16} | 16 | 45.289 | 5 |
7 | {2,1,3,7,14,6,15,5,4} | {8,9,10,11,12,13,16} | 16 | 42.367 | 4 |
m | D | Sensor Taken Out | |||
6 | {2,1,3,7,14,6,15,5,4,8} | {9,10,11,12,13,16} | 15 | 36.777 | 8 |
6 | {2,1,3,7,14,6,15,5,4,9} | {8,10,11,12,13,16} | 14 | 34.325 | 9 |
6 | {2,1,3,7,14,6,15,5,4,10} | {8,9,11,12,13,15} | 15 | 36.777 | 10 |
6 | {2,1,3,7,14,6,15,5,4,11} | {8,9,10,12,13,16} | 15 | 36.777 | 11 |
6 | {2,1,3,7,14,6,15,5,4,12} | {8,9,10,11,13,16} | 15 | 36.777 | 12 |
6 | {2,1,3,7,14,6,15,5,4,13} | {8,9,10,11,12,16} | 15 | 36.777 | 13 |
6 | {2,1,3,7,14,6,15,5,4,16} | {8,9,10,11,12,13} | 13 | 31.845 | 16 |
Case | |||
---|---|---|---|
Case 1 | 0.95 | 0.02773 | |
0.97 | 0.02777 | ||
1.1 | 0.02858 | 0.048646 | |
1.15 | 0.02850 | ||
1.2 | 0.02875 | ||
Average | 0.02827 | 0.04865 | |
Case 2 | 0.95 | 0.01750 | 0.01745 |
0.97 | 0.01462 | 0.01733 | |
1.1 | 0.01363 | 0.01679 | |
1.15 | 0.01315 | 0.01676 | |
1.2 | 0.01281 | 0.01664 | |
Average | 0.01434 | 0.01699 | |
Case 3 | 0.95 | 0.01597 | 0.00765 |
0.97 | 0.01336 | 0.00769 | |
1.1 | 0.01317 | 0.00789 | |
1.15 | 0.01284 | 0.00777 | |
1.2 | 0.01262 | 0.00769 | |
Average | 0.01359 | 0.00774 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Obiri, S.A.; Agyeman, B.T.; Debnath, S.; Liu, S.; Liu, J. Sensor Selection and State Estimation of Continuous mAb Production Processes. Mathematics 2023, 11, 3860. https://doi.org/10.3390/math11183860
Obiri SA, Agyeman BT, Debnath S, Liu S, Liu J. Sensor Selection and State Estimation of Continuous mAb Production Processes. Mathematics. 2023; 11(18):3860. https://doi.org/10.3390/math11183860
Chicago/Turabian StyleObiri, Sandra A., Bernard T. Agyeman, Sarupa Debnath, Siyu Liu, and Jinfeng Liu. 2023. "Sensor Selection and State Estimation of Continuous mAb Production Processes" Mathematics 11, no. 18: 3860. https://doi.org/10.3390/math11183860
APA StyleObiri, S. A., Agyeman, B. T., Debnath, S., Liu, S., & Liu, J. (2023). Sensor Selection and State Estimation of Continuous mAb Production Processes. Mathematics, 11(18), 3860. https://doi.org/10.3390/math11183860