Fourth-Order Difference Scheme and a Matrix Transform Approach for Solving Fractional PDEs
Abstract
:1. Introduction
2. Matrix Transform Technique
Discrete Scheme of 2D Case
3. Approximating an Integral Part with Lagrange Interpolation
4. Convergence and Stability Analysis
5. Numerical Validations
5.1. Example 1
5.2. Example 2
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar] [CrossRef]
- Giesekus, H. Theory of Viscoelasticity. VonR. M. Christensen. Academic Press, New York-London 1971. 1. Aufl., XI, 245 S., zahlr. Abb. geb. $ 13.50. Chem. Ing. Tech. CIT 1972, 44, 356. [Google Scholar] [CrossRef]
- Renardy, M. Mathematical Analysis of Viscoelastic Flows; SIAM: Philadelphia, PA, USA, 2000. [Google Scholar]
- Aziz, I.; Ain, Q.U. Numerical solution of partial integro-differential equations with weakly singular kernels. Adv. Math. Model. Appl. 2020, 5, 149–160. [Google Scholar]
- Qiao, L.; Xu, D.; Yan, Y. High-order ADI orthogonal spline collocation method for a new 2D fractional integro-differential problem. Math. Methods Appl. Sci. 2020, 43, 5162–5178. [Google Scholar] [CrossRef]
- Alavi, J.; Aminikhah, H. Orthogonal cubic spline basis and its applications to a partial integro-differential equation with a weakly singular kernel. Comput. Appl. Math. 2021, 40, 55. [Google Scholar] [CrossRef]
- Guo, J.; Xu, D. A Compact Difference Scheme for the Time-Fractional Partial Integro-Differential Equation with a Weakly Singular Kernel. Adv. Appl. Math. Mech. 2020, 12, 1261–1279. [Google Scholar] [CrossRef]
- Fakhar-Izadi, F. Fully spectral-Galerkin method for the one- and two-dimensional fourth-order time-fractional partial integro-differential equations with a weakly singular kernel. Numer. Methods Partial. Differ. Equ. 2020, 38, 160–176. [Google Scholar] [CrossRef]
- Sadeghi, B.; Maleki, M.; Almasieh, H. Space-time Muntz spectral collocation approach for parabolic Volterra integro-differential equations with a singular kernel. Int. J. Nonlinear Anal. Appl. 2022, 14, 153–162. [Google Scholar] [CrossRef]
- Ul Islam, S.; Ali, A.; Zafar, A.; Hussain, I. A Differential Quadrature Based Approach for Volterra Partial Integro-Differential Equation with a Weakly Singular Kernel. Comput. Model. Eng. Sci. 2020, 124, 915–935. [Google Scholar] [CrossRef]
- Chen, H.; Qiu, W.; Zaky, M.A.; Hendy, A.S. A two-grid temporal second-order scheme for the two-dimensional nonlinear Volterra integro-differential equation with weakly singular kernel. Calcolo 2023, 60, 13. [Google Scholar] [CrossRef]
- Chen, X.; Ding, D.; Lei, S.L.; Wang, W. An implicit-explicit preconditioned direct method for pricing options under regime-switching tempered fractional partial differential models. Numer. Algorithms 2021, 87, 939–965. [Google Scholar] [CrossRef]
- Chen, Y. Second-order IMEX scheme for a system of partial integro-differential equations from Asian option pricing under regime-switching jump-diffusion models. Numer. Algorithms 2022, 89, 1823–1843. [Google Scholar] [CrossRef]
- Qiu, W.; Xu, D.; Yang, X.; Zhang, H. The efficient ADI Galerkin finite element methods for the three-dimensional nonlocal evolution problem arising in viscoelastic mechanics. Discret. Contin. Dyn. Syst. B 2023, 28, 3079–3106. [Google Scholar] [CrossRef]
- Zhang, H.; Han, X.; Yang, X. Quintic B-spline collocation method for fourth order partial integro-differential equations with a weakly singular kernel. Appl. Math. Comput. 2013, 219, 6565–6575. [Google Scholar] [CrossRef]
- Santra, S.; Mohapatra, J. A novel finite difference technique with error estimate for time fractional partial integro-differential equation of Volterra type. J. Comput. Appl. Math. 2022, 400, 113746. [Google Scholar] [CrossRef]
- Sachs, E.; Strauss, A. Efficient solution of a partial integro-differential equation in finance. Appl. Numer. Math. 2008, 58, 1687–1703. [Google Scholar] [CrossRef]
- Baigereyev, D.; Omariyeva, D.; Temirbekov, N.; Yergaliyev, Y.; Boranbek, K. Numerical Method for a Filtration Model Involving a Nonlinear Partial Integro-Differential Equation. Mathematics 2022, 10, 1319. [Google Scholar] [CrossRef]
- Luo, Z.; Zhang, X.; Wang, S.; Yao, L. Numerical approximation of time fractional partial integro-differential equation based on compact finite difference scheme. Chaos Solitons Fractals 2022, 161, 112395. [Google Scholar] [CrossRef]
- Abdalla, M.; Boulaaras, S.; Akel, M. On Fourier–Bessel matrix transforms and applications. Math. Methods Appl. Sci. 2021, 44, 11293–11306. [Google Scholar] [CrossRef]
- Rani, D.; Mishra, V.; Cattani, C. Numerical inversion of Laplace transform based on Bernstein operational matrix. Math. Methods Appl. Sci. 2018, 41, 9231–9243. [Google Scholar] [CrossRef]
- Mahmoodi Darani, N. Hybrid collocation method for some classes of second-kind nonlinear weakly singular integral equations. Comput. Methods Differ. Equ. 2022, 11, 183–196. [Google Scholar] [CrossRef]
- Amin, A.Z.; Zaky, M.A.; Hendy, A.S.; Hashim, I.; Aldraiweesh, A. High-Order Multivariate Spectral Algorithms for High-Dimensional Nonlinear Weakly Singular Integral Equations with Delay. Mathematics 2022, 10, 3065. [Google Scholar] [CrossRef]
- Atta, A.; Youssri, Y. Advanced shifted first-kind Chebyshev collocation approach for solving the nonlinear time-fractional partial integro-differential equation with a weakly singular kernel. Comput. Appl. Math. 2022, 41, 381. [Google Scholar] [CrossRef]
- Li, H.; Ma, J. Piecewise Fractional Jacobi Polynomial Approximations for Volterra Integro-Differential Equations with Weakly Singular Kernels. Axioms 2022, 11, 530. [Google Scholar] [CrossRef]
- Liao, F.; Zhang, L.; Wang, T. Two energy-conserving and compact finite difference schemes for two-dimensional Schrödinger-Boussinesq equations. Numer. Algorithms 2020, 85, 1335–1363. [Google Scholar] [CrossRef]
- Vong, S.; Lyu, P.; Chen, X.; Lei, S.L. High order finite difference method for time-space fractional differential equations with Caputo and Riemann-Liouville derivatives. Numer. Algorithms 2016, 72, 195–210. [Google Scholar] [CrossRef]
- Dehghan, M.; Mohebbi, A.; Asgari, Z. Fourth-order compact solution of the nonlinear Klein-Gordon equation. Numer. Algorithms 2009, 52, 523–540. [Google Scholar] [CrossRef]
- Chen, C.M.; Liu, F.; Turner, I.; Anh, V. Numerical schemes and multivariate extrapolation of a two-dimensional anomalous sub-diffusion equation. Numer. Algorithms 2010, 54, 1–21. [Google Scholar] [CrossRef]
- Wu, X.; Deng, W.; Barkai, E. Tempered fractional Feynman-Kac equation: Theory and examples. Phys. Rev. E 2016, 93, 032151. [Google Scholar] [CrossRef]
- Li, C.; Zeng, F. Numerical Methods for Fractional Calculus; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Caputo, M. Mean fractional-order-derivatives differential equations and filters. Ann. Dell’Universita Ferrara. 1995, 41, 73–84. [Google Scholar] [CrossRef]
- Yu, B. High-order compact finite difference method for the multi-term time fractional mixed diffusion and diffusion-wave equation. Math. Methods Appl. Sci. 2021, 44, 6526–6539. [Google Scholar] [CrossRef]
- Cui, M. Compact finite difference method for the fractional diffusion equation. J. Comput. Phys. 2009, 228, 7792–7804. [Google Scholar] [CrossRef]
- Khaksar-e Oshagh, M.; Shamsi, M. Direct pseudo-spectral method for optimal control of obstacle problem–an optimal control problem governed by elliptic variational inequality. Math. Methods Appl. Sci. 2017, 40, 4993–5004. [Google Scholar] [CrossRef]
- Marrero, J.A.; Hadj, D.A. Improving formulas for the eigenvalues of finite block-Toeplitz tridiagonal matrices. Appl. Math. Comput. 2020, 382, 125324. [Google Scholar] [CrossRef]
- Kaneko, H.; Xu, Y. Gauss-type quadratures for weakly singular integrals and their application to Fredholm integral equations of the second kind. Math. Comput. 1994, 62, 739–753. [Google Scholar] [CrossRef]
- Horn, R.A.; Johnson, C.R. Matrix Analysis; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
h | -Order | -Order | ||
---|---|---|---|---|
− | − | |||
h | -Order | -Order | ||
---|---|---|---|---|
− | − | |||
h | Error | -Order | Error | -Order | ||
---|---|---|---|---|---|---|
− | − | |||||
− | − | |||||
− | − | |||||
h | -Order | -Order | ||
---|---|---|---|---|
− | − | |||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salman, Z.I.; Tavassoli Kajani, M.; Mechee, M.S.; Allame, M. Fourth-Order Difference Scheme and a Matrix Transform Approach for Solving Fractional PDEs. Mathematics 2023, 11, 3786. https://doi.org/10.3390/math11173786
Salman ZI, Tavassoli Kajani M, Mechee MS, Allame M. Fourth-Order Difference Scheme and a Matrix Transform Approach for Solving Fractional PDEs. Mathematics. 2023; 11(17):3786. https://doi.org/10.3390/math11173786
Chicago/Turabian StyleSalman, Zahrah I., Majid Tavassoli Kajani, Mohammed Sahib Mechee, and Masoud Allame. 2023. "Fourth-Order Difference Scheme and a Matrix Transform Approach for Solving Fractional PDEs" Mathematics 11, no. 17: 3786. https://doi.org/10.3390/math11173786
APA StyleSalman, Z. I., Tavassoli Kajani, M., Mechee, M. S., & Allame, M. (2023). Fourth-Order Difference Scheme and a Matrix Transform Approach for Solving Fractional PDEs. Mathematics, 11(17), 3786. https://doi.org/10.3390/math11173786