Positive Solutions to the Discrete Boundary Value Problem of the Kirchhoff Type
Abstract
:1. Introduction
- (i)
- ;
- (ii)
- for each , the functional is coercive.
2. Preliminaries
3. Main Results
- (M1)
- for each ;
- (M2)
- ;
- (M3)
- there is a positive constant with
- (N1)
- for each ;
- (N2)
- ;
- (N3)
- there is a positive constant such that
4. Examples
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Al-Gwaiz, M.; Benci, V.; Gazzola, F. Bending and stretching energies in a rectangular plate modeling suspension bridges. Nonlinear Anal. 2014, 106, 18–34. [Google Scholar] [CrossRef]
- Kirchhoff, G. Mechanik; Teubner: Leipzig, Germany, 1883. [Google Scholar]
- Lions, J.L. On some questions in boundary value problems of mathematical physics. North-Holl. Math. Stud. 1978, 30, 284–346. [Google Scholar]
- He, X.M.; Zou, W.M. Infinitely many positive solutions for Kirchhoff-type problems. Nonlinear Anal. 2009, 70, 1407–1414. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, J.H. Nontrivial solutions of a class of nonlocal problems via local linking theory. Appl. Math. Lett. 2010, 23, 377–380. [Google Scholar] [CrossRef]
- Zhang, Z.T.; Perera, K. Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow. J. Math. Anal. Appl. 2006, 317, 456–463. [Google Scholar] [CrossRef]
- Cheng, B.T. New existence and multiplicity of nontrivial solutions for nonlocal elliptic Kirchhoff type problems. J. Math. Anal. Appl. 2012, 394, 488–495. [Google Scholar] [CrossRef]
- Perera, K.; Zhang, Z.T. Nontrivial solutions of Kirchhoff-type problems via the Yang index. J. Differ. Equ. 2006, 221, 246–255. [Google Scholar] [CrossRef]
- Agarwal, R.P. Difference Equations and Inequalities: Theory, Methods, and Applications; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Elaydi, S. An Introduction to Difference Equations; Springer: New York, NY, USA, 2005. [Google Scholar]
- Zheng, B.; Yu, J.S.; Li, J. Modeling and analysis of the implementation of the Wolbachia incompatible and sterile insect technique for mosquito population suppression. SIAM J. Appl. Math. 2021, 81, 718–740. [Google Scholar] [CrossRef]
- Yu, J.S.; Li, J. Discrete-time models for interactive wild and sterile mosquitoes with general time steps. Math. Biosci. 2022, 346, 108797. [Google Scholar] [CrossRef]
- Wang, C.S.; Liu, X.D.; Jiao, F.; Mai, H.; Chen, H.; Lin, R.P. Generalized Halanay inequalities and relative application to time-delay dynamical systems. Mathematics 2023, 11, 1940. [Google Scholar] [CrossRef]
- Zhu, Q.X. Stabilization of stochastic nonlinear delay systems with exogenous disturbances and the event-triggered feedback control. IEEE Trans. Autom. Control 2019, 64, 3764–3771. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhu, Q.X. Stabilization of stochastic highly nonlinear delay systems with neutral term. IEEE Trans. Autom. Control 2023, 68, 2544–2551. [Google Scholar] [CrossRef]
- Bereanu, C.; Mawhin, J. Boundary value problems for second-order nonlinear difference equations with discrete ϕ-Laplacian and singular ϕ. J. Differ. Equ. Appl. 2008, 14, 1099–1118. [Google Scholar] [CrossRef]
- He, Z.M. On the existence of positive solutions of p-Laplacian difference equations. J. Comput. Appl. Math. 2003, 161, 193–201. [Google Scholar] [CrossRef]
- Rao, R.F.; Lin, Z.; Ai, X.Q.; Wu, J.R. Synchronization of epidemic systems with Neumann boundary value under delayed impulse. Mathematics 2022, 10, 2064. [Google Scholar] [CrossRef]
- Henderson, J.; Thompson, H.B. Existence of multiple solutions for second-order discrete boundary value problems. Comput. Math. Appl. 2002, 43, 1239–1248. [Google Scholar] [CrossRef]
- Jiang, D.Q.; O’Regan, D.; Agarwal, R.P. A generalized upper and lower solution method for singular discrete boundary value problems for the one-dimensional p-Laplacian. J. Appl. Anal. 2005, 11, 35–47. [Google Scholar] [CrossRef]
- Li, G.D.; Zhang, Y.; Guan, Y.J.; Li, W.J. Stability analysis of multi-point boundary conditions for fractional differential equation with non-instantaneous integral impulse. Math. Biosci. Eng. 2023, 20, 7020–7041. [Google Scholar] [CrossRef]
- Long, Y.H.; Wang, S.H. Multiple solutions for nonlinear functional difference equations by the invariant sets of descending flow. J. Differ. Equ. Appl. 2019, 25, 1768–1789. [Google Scholar] [CrossRef]
- Guo, Z.M.; Yu, J.S. Existence of periodic and subharmonic solutions for second-order superlinear difference equations. Sci. China Ser. A Math. 2003, 46, 506–515. [Google Scholar] [CrossRef]
- Zhou, Z.; Yu, J.S.; Chen, Y.M. Periodic solutions of a 2nth-order nonlinear difference equation. Sci. China Ser. A Math. 2010, 53, 41–50. [Google Scholar] [CrossRef]
- Cai, X.C.; Yu, J.S. Existence of periodic solutions for a 2nth-order nonlinear difference equation. J. Math. Anal. Appl. 2007, 329, 870–878. [Google Scholar] [CrossRef]
- Zhou, Z.; Yu, J.S. Homoclinic solutions in periodic nonlinear difference equations with superlinear nonlinearity. Acta Math. Sin. Eng. Ser. 2013, 29, 1809–1822. [Google Scholar] [CrossRef]
- Lin, G.H.; Zhou, Z. Homoclinic solutions of discrete ϕ-Laplacian equations with mixed nonlinearities. Commun. Pure Appl. Anal. 2018, 17, 1723–1747. [Google Scholar] [CrossRef]
- Mei, P.; Zhou, Z. Homoclinic solutions of discrete prescribed mean curvature equations with mixed nonlinearities. Appl. Math. Lett. 2022, 130, 108006. [Google Scholar] [CrossRef]
- Kuang, J.H.; Guo, Z.M. Heteroclinic solutions for a class of p-Laplacian difference equations with a parameter. Appl. Math. Lett. 2020, 100, 106034. [Google Scholar] [CrossRef]
- D’Aguì, G.; Mawhin, J.; Sciammetta, A. Positive solutions for a discrete two point nonlinear boundary value problem with p-Laplacian. J. Math. Anal. Appl. 2017, 447, 383–397. [Google Scholar] [CrossRef]
- Wang, S.H.; Zhou, Z. Three solutions for a partial discrete Dirichlet boundary value problem with p-Laplacian. Bound. Value Probl. 2021, 39, 2021. [Google Scholar] [CrossRef]
- Xiong, F.; Zhou, Z. Three solutions to Dirichlet problems for second-order self-adjoint difference equations involving p-Laplacian. Adv. Differ. Equ. 2021, 192, 2021. [Google Scholar] [CrossRef]
- Jiang, L.Q.; Zhou, Z. Three solutions to Dirichlet boundary value problems for p-Laplacian difference equations. Adv. Differ. Equ. 2007, 2008, 345916. [Google Scholar] [CrossRef]
- Yang, J.P.; Liu, J.S. Nontrivial solutions for discrete Kirchhoff-type problems with resonance via critical groups. Adv. Differ. Equ. 2013, 308, 2013. [Google Scholar] [CrossRef]
- Long, Y.H. Nontrivial solutions of discrete Kirchhoff-type problems via Morse theory. Adv. Nonlinear Anal. 2022, 11, 1352–1364. [Google Scholar] [CrossRef]
- Long, Y.H. Multiple results on nontrivial solutions of discrete Kirchhoff type problems. J. Appl. Math. Comput. 2023, 69, 1–17. [Google Scholar] [CrossRef]
- Zhang, W.H.; Zhou, Z. Infinitely many solutions for the discrete boundary value problems of the Kirchhoff type. Symmetry 2022, 14, 1844. [Google Scholar] [CrossRef]
- Bonanno, G.; Candito, P.; D’Aguí, G. Variational methods on finite dimensional Banach spaces and discrete problems. Adv. Nonlinear Stud. 2014, 14, 915–939. [Google Scholar] [CrossRef]
- Bonanno, G.; D’Aguì, G. Two non-zero solutions for elliptic Dirichlet problems. Z. Anal. Anwend. 2016, 35, 449–464. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, B.; Zhou, Z. Positive Solutions to the Discrete Boundary Value Problem of the Kirchhoff Type. Mathematics 2023, 11, 3588. https://doi.org/10.3390/math11163588
Lin B, Zhou Z. Positive Solutions to the Discrete Boundary Value Problem of the Kirchhoff Type. Mathematics. 2023; 11(16):3588. https://doi.org/10.3390/math11163588
Chicago/Turabian StyleLin, Bahua, and Zhan Zhou. 2023. "Positive Solutions to the Discrete Boundary Value Problem of the Kirchhoff Type" Mathematics 11, no. 16: 3588. https://doi.org/10.3390/math11163588
APA StyleLin, B., & Zhou, Z. (2023). Positive Solutions to the Discrete Boundary Value Problem of the Kirchhoff Type. Mathematics, 11(16), 3588. https://doi.org/10.3390/math11163588