Fractal Divergences of Generalized Jacobi Polynomials
Abstract
:1. Introduction
2. Preliminaries
3. The Asymptotic Behavior of Fractal Kullback–Leibler Divergence
4. The Asymptotic Behavior of Fractal Tsallis Divergence
5. The Asymptotic Behavior of Fractal Rényi Divergence
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fatou, P. Sur les équations fonctionelles. Bull. Soc. Math. Fr. 1919, 47, 161–271. [Google Scholar] [CrossRef] [Green Version]
- Julia, G. Sur l’itération des fonctions rationelles. J. Math. Pure Appl. 1918, 4, 47–245. [Google Scholar]
- Mandelbrot, B.B. The Fractal Geometry of Nature; Freeman: New York, NY, USA, 1982. [Google Scholar]
- Beardon, A.F. Iteration of Rational Functions; Springer: Berlin/Heidelberg, Germany, 1991. [Google Scholar]
- Milnor, J. Dynamics in One Complex Variable, 3rd ed.; Princeton University Press: Princeton, NJ, USA, 2006. [Google Scholar]
- Hutchinson, J. Fractals and self-similarity. Indiana Univ. Math. J. 1981, 30, 713–747. [Google Scholar] [CrossRef]
- Barnsley, M.F. Fractals Everywhere, 2nd ed.; Morgan Kaufmann: Burlington, MA, USA, 1993. [Google Scholar]
- Chiţescu, I. Two ways to fractals. In Proceedings of the 12-th International Symposium on Geometric Function Theory and Applications, Alba Iulia, Romania, 25–28 August 2016; Aeternitas Publishing House: Alba Iulia, Romania, 2017; pp. 105–117. [Google Scholar]
- Miculescu, R.; Mihail, A. Graph Lipscomb’s space is a generalized Hutchinson-Barnsley fractal. Aequationes Math. 2022, 96, 1141–1157. [Google Scholar] [CrossRef]
- Miculescu, R.; Mihail, A.; Păcurar, C.M. A fractal interpolation scheme for a possible sizeable set of data. J. Fractal Geom. 2022, 9, 337–355. [Google Scholar] [CrossRef]
- Chiţescu, I.; Ioana, L.; Miculescu, R.; Niţă, L.; Sfetcu, R.-C. Invariant (fractal) vector measures as fixed points of Markov-type operators. Bull. Braz. Math. Soc. New Ser. 2023, 54, 8. [Google Scholar] [CrossRef]
- Strobin, F.; Swaczyna, J. Connectedness of attractors of a certain family of IFSs. J. Fractal Geom. 2020, 7, 219–231. [Google Scholar] [CrossRef]
- Banakh, T.; Nowak, M.; Strobin, F. Embedding fractals in Banach, Hilbert or Euclidean spaces. J. Fractal Geom. 2020, 7, 351–386. [Google Scholar] [CrossRef]
- Bak, P. How Nature Works: The Science of Self-Organized Criticality; Springer: New York, NY, USA, 1996. [Google Scholar]
- Cramer, F. Chaos and Order: The Complex Structure of Living Systems; Loewus, D.I., Translator; VCH Publishers: New York, NY, USA, 1993. [Google Scholar]
- Pincus, S.M. Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA 1991, 88, 2297–2301. [Google Scholar] [CrossRef]
- Bar-Yam, Y. Multiscale complexity/entropy. Adv. Complex Syst. 2004, 7, 47–63. [Google Scholar] [CrossRef]
- Bar-Yam, Y. Multiscale variety in complex systems. Complexity 2004, 9, 37–45. [Google Scholar] [CrossRef]
- Feder, J. Fractals; Plenum Press: New York, NY, USA, 1988. [Google Scholar]
- Wilson, A.G. Complex Spatial Systems: The Modelling Foundations of Urban and Regional Analysis; Pearson Education: Singapore, 2000. [Google Scholar]
- Wilson, A. Entropy in urban and regional modelling: Retrospect and prospect. Geogr. Anal. 2010, 42, 364–394. [Google Scholar] [CrossRef]
- Batty, M. Cities and Complexity: Understanding Cities with Cellular Automata; MIT Press: Cambridge, MA, USA, 2005. [Google Scholar]
- Batty, M.; Longley, P.A. Fractal Cities: A Geometry of Form and Function; Academic Press: London, UK, 1994. [Google Scholar]
- Frankhauser, P. La Fractalité des Structures Urbaines (The Fractal Aspects of Urban Structures); Economica: Paris, France, 1994. [Google Scholar]
- White, R.; Engelen, G. Urban systems dynamics and cellular automata: Fractal structures between order and chaos. Chaos Solitons Fractals 1994, 4, 563–583. [Google Scholar] [CrossRef]
- Stanley, H.E.; Meakin, P. Multifractal phenomena in physics and chemistry. Nature 1988, 335, 405–409. [Google Scholar] [CrossRef]
- Ryabko, B. Noise-free coding of combinatorial sources, Hausdorff dimension and Kolmogorov complexity. Probl. Peredachi Informatsii 1986, 22, 16–26. [Google Scholar]
- Chen, Y. Equivalent relation between normalized spatial entropy and fractal dimension. Phys. A 2020, 553, 124627. [Google Scholar] [CrossRef]
- Dreizler, R.M.; Gross, E.K.U. Density Functional Theory: An Approach to the Quantum Mechanics; Springer: Berlin/Heidelberg, Germany, 1990. [Google Scholar]
- Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. B 1964, 136, 864–870. [Google Scholar] [CrossRef] [Green Version]
- March, N.H. Electron Density Theory of Atoms and Molecules; Academic Press: New York, NY, USA, 1992. [Google Scholar]
- Jacquet, P.; Szpankowski, W. Entropy computations via analytic depoissonization. IEEE Trans. Inform. Theory 1999, 45, 1072–1081. [Google Scholar] [CrossRef] [Green Version]
- Knessl, C. Integral representations and asymptotic expansions for Shannon and Rényi entropies. Appl. Math. Lett. 1998, 11, 69–74. [Google Scholar] [CrossRef] [Green Version]
- Abe, S.; Suzuki, N. Law for the distance between successive earthquakes. J. Geophys. Res. 2003, 108, 2113. [Google Scholar] [CrossRef] [Green Version]
- Darooneh, A.H.; Dadashinia, C. Analysis of the spatial and temporal distributions between successive earthquakes: Nonextensive statistical mechanics viewpoint. Phys. A 2008, 387, 3647–3654. [Google Scholar] [CrossRef]
- Hasumi, T. Hypocenter interval statistics between successive earthquakes in the twodimensional Burridge-Knopoff model. Phys. A 2009, 388, 477–482. [Google Scholar] [CrossRef] [Green Version]
- Ramírez-Rojas, A.; Flores-Márquez, E.L.; Sarlis, N.V.; Varotsos, P.A. The complexity measures associated with the fluctuations of the entropy in natural time before the deadly México M8.2 Earthquake on 7 September 2017. Entropy 2018, 20, 477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarlis, N.V.; Skordas, E.S.; Varotsos, P.A. A remarkable change of the entropy of seismicity in natural time under time reversal before the super-giant M9 Tohoku earthquake on 11 March 2011. Europhys. Lett. 2018, 124, 29001. [Google Scholar] [CrossRef]
- Varotsos, P.A.; Sarlis, N.V.; Skordas, E.S. Tsallis entropy index q and the complexity measure of seismicity in natural time under time reversal before the M9 Tohoku earthquake in 2011. Entropy 2018, 20, 757. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.Q.; Chen, W.; Zhou, W.X. Scaling in the distribution of intertrade durations of Chinese stocks. Phys. A 2008, 387, 5818–5825. [Google Scholar] [CrossRef] [Green Version]
- Kaizoji, T. An interacting-agent model of financial markets from the viewpoint of nonextensive statistical mechanics. Phys. A 2006, 370, 109–113. [Google Scholar] [CrossRef] [Green Version]
- Lima, J.A.S.; Silva, R., Jr.; Santos, J. Plasma oscillations and nonextensive statistics. Phys. Rev. E 2000, 61, 3260. [Google Scholar] [CrossRef]
- Livadiotis, G.; McComas, D.J. Beyond kappa distributions: Exploiting Tsallis statistical mechanics in space plasmas. J. Geophys. Res. 2009, 114, A11105. [Google Scholar] [CrossRef]
- Livadiotis, G.; McComas, D.J. Thermodynamic definitions of temperature and kappa and introduction of the entropy defect. Entropy 2021, 23, 1683. [Google Scholar] [CrossRef]
- Barbu, V.S.; Karagrigoriou, A.; Preda, V. Entropy, divergence rates and weighted divergence rates for Markov chains. I: The alpha-gamma and beta-gamma case. Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci. 2017, 18, 293–301. [Google Scholar]
- Barbu, V.S.; Karagrigoriou, A.; Preda, V. Entropy and divergence rates for Markov chains. II: The weighted case. Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci. 2018, 19, 3–10. [Google Scholar]
- Barbu, V.S.; Karagrigoriou, A.; Preda, V. Entropy and divergence rates for Markov chains. III: The Cressie and Read case and applications. Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci. 2018, 19, 413–421. [Google Scholar]
- Abreul, E.M.C.; Neto, J.A.; Barboza, E.M.; Nunes, R.C. Jeans instability criterion from the viewpoint of Kaniadakis’ statistics. Europhys. Lett. 2016, 114, 55001. [Google Scholar] [CrossRef] [Green Version]
- Cure, M.; Rial, D.F.; Christen, A.; Cassetti, J. A method to deconvolve stellar rotational velocities. Astron. Astrophys. 2014, 564, A85. [Google Scholar] [CrossRef] [Green Version]
- Toma, A. Model selection criteria using divergences. Entropy 2014, 16, 2686–2698. [Google Scholar] [CrossRef] [Green Version]
- Toma, A.; Karagrigoriou, A.; Trentou, P. Robust model selection criteria based on pseudodistances. Entropy 2020, 22, 304. [Google Scholar] [CrossRef] [Green Version]
- Raşa, I. Convexity properties of some entropies. Result. Math. 2018, 73, 105. [Google Scholar] [CrossRef]
- Raşa, I. Convexity properties of some entropies. II. Result. Math. 2019, 74, 154. [Google Scholar] [CrossRef]
- Preda, V.; Dedu, S.; Sheraz, M. New measure selection for Hunt-Devolder semi-Markov regime switching interest rate models. Phys. A 2014, 407, 350–359. [Google Scholar] [CrossRef]
- Preda, V.; Dedu, S.; Iatan, I.; Dănilă Cernat, I.; Sheraz, M. Tsallis entropy for loss models and survival models involving truncated and censored random variables. Entropy 2022, 24, 1654. [Google Scholar] [CrossRef] [PubMed]
- Trivellato, B. The minimal k-entropy martingale measure. Int. J. Theor. Appl. Financ. 2012, 15, 1250038. [Google Scholar] [CrossRef]
- Trivellato, B. Deformed exponentials and applications to finance. Entropy 2013, 15, 3471–3489. [Google Scholar] [CrossRef] [Green Version]
- Hirică, I.-E.; Pripoae, C.-L.; Pripoae, G.-T.; Preda, V. Lie symmetries of the nonlinear Fokker-Planck equation based on weighted Kaniadakis entropy. Mathematics 2022, 10, 2776. [Google Scholar] [CrossRef]
- Pripoae, C.-L.; Hirică, I.-E.; Pripoae, G.-T.; Preda, V. Lie symmetries of the nonlinear Fokker-Planck equation based on weighted Tsallis entropy. Carpathian J. Math. 2022, 38, 597–617. [Google Scholar] [CrossRef]
- Furuichi, S.; Mitroi, F.-C. Mathematical inequalities for some divergences. Phys. A 2012, 391, 388–400. [Google Scholar] [CrossRef] [Green Version]
- Furuichi, S.; Yanagi, K.; Kuriyama, K. Fundamental properties of Tsallis relative entropy. J. Math. Phys. 2004, 45, 4868–4877. [Google Scholar] [CrossRef] [Green Version]
- Furuichi, S.; Minculete, N.; Mitroi, F.-C. Some inequalities on generalized entropies. J. Inequal. Appl. 2012, 226. [Google Scholar] [CrossRef] [Green Version]
- Furuichi, S.; Mitroi-Symeonidis, F.-C.; Symeonidis, E. On some properties of Tsallis hypoentropies and hypodivergences. Entropy 2014, 16, 5377–5399. [Google Scholar] [CrossRef] [Green Version]
- Furuichi, S.; Minculete, N. Refined Young inequality and its application to divergences. Entropy 2021, 23, 514. [Google Scholar] [CrossRef]
- Dehesa, J.S.; Van Assche, W.; Yáñez, R.J. Information entropy of classical orthogonal polynomials and their application to the harmonic oscillator and Coulomb potentials. Methods Appl. Anal. 1997, 4, 91–110. [Google Scholar] [CrossRef] [Green Version]
- Yáñez, R.J.; Van Assche, W.; Dehesa, J.S. Position and momentum information entropies of the D-dimensional harmonic oscillator and hydrogen atom. Phys. Rev. A 1994, 50, 3065–3079. [Google Scholar] [CrossRef] [PubMed]
- Aptekarev, A.I.; Dehesa, J.S.; Martínez-Finkelshtein, A.; Yáñez, R.J. Discrete entropies of orthogonal polynomials. Constr. Approx. 2009, 30, 93–119. [Google Scholar] [CrossRef] [Green Version]
- Buyarov, V.S.; Dehesa, J.S.; Martínez-Finkelshtein, A.; Saff, E.B. Asymptotics of the information entropy for Jacobi and Laguerre polynomials with varying weights. J. Approx. Theory 1999, 99, 153–166. [Google Scholar] [CrossRef] [Green Version]
- Buyarov, V.S.; Dehesa, J.S.; Martínez-Finkelshtein, A.; Sánchez-Lara, J. Computation of the entropy of polynomials orthogonal on an interval. SIAM J. Sci. Comput. 2004, 26, 488–509. [Google Scholar]
- Martínez-Finkelshtein, A.; Nevai, P.; Peña, A. Discrete entropy of generalized Jacobi polynomials. J. Math. Anal. Appl. 2015, 431, 99–110. [Google Scholar] [CrossRef]
- Sfetcu, R.-C. Tsallis and Rényi divergences of generalized Jacobi polynomials. Phys. A 2016, 460, 131–138. [Google Scholar] [CrossRef]
- Dehesa, J.S. Entropy-like properties and Lq-norms of hypergeometric orthogonal polynomials: Degree asymptotics. Symmetry 2021, 13, 1416. [Google Scholar] [CrossRef]
- Sobrino, N.; Dehesa, J.S. Parameter and q asymptotics of Lq-norms of hypergeometric orthogonal polynomials. Int. J. Quantum Chem. 2023, 123, e27013. [Google Scholar] [CrossRef]
- Wang, Q.A. Extensive generalization of statistical mechanics based on incomplete information theory. Entropy 2003, 5, 220–232. [Google Scholar] [CrossRef] [Green Version]
- Nevai, P. Géza Freud, orthogonal polynomials and Christoffel functions. A case study. J. Approx. Theory 1986, 48, 3–167. [Google Scholar] [CrossRef] [Green Version]
- Kuijlaars, A.B.; McLaughlin, K.T.-R.; Van Assche, W.; Vanlessen, M. The Riemann-Hilbert approach to strong asymptotics for orthogonal polynomials on [−1,1]. Adv. Math. 2014, 188, 337–398. [Google Scholar] [CrossRef] [Green Version]
- Cassels, J.W.S. An Introduction to Diophantine Approximation, Cambridge Tracts in Mathematics and Mathematical Physics; Cambridge University Press: New York, NY, USA, 1957; Volume 45. [Google Scholar]
- Khinchin, A. Zur Birkhoff’s lösung des ergodensproblems. Math. Ann. 1933, 107, 485–488. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sfetcu, R.-C.; Preda, V. Fractal Divergences of Generalized Jacobi Polynomials. Mathematics 2023, 11, 3500. https://doi.org/10.3390/math11163500
Sfetcu R-C, Preda V. Fractal Divergences of Generalized Jacobi Polynomials. Mathematics. 2023; 11(16):3500. https://doi.org/10.3390/math11163500
Chicago/Turabian StyleSfetcu, Răzvan-Cornel, and Vasile Preda. 2023. "Fractal Divergences of Generalized Jacobi Polynomials" Mathematics 11, no. 16: 3500. https://doi.org/10.3390/math11163500
APA StyleSfetcu, R.-C., & Preda, V. (2023). Fractal Divergences of Generalized Jacobi Polynomials. Mathematics, 11(16), 3500. https://doi.org/10.3390/math11163500