Neutral Differential Equations of Higher-Order in Canonical Form: Oscillation Criteria
Abstract
:1. Introduction
- (M1)
- ℓ and i are quotients of odd positive integers;
- (M2)
- and under the canonical form, that is
- (M3)
- , , and
- (M4)
- ;
- (M5)
2. Preliminary Lemmas
3. Main Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tunc, E. Oscillatory and asymptotic behavior of third order neutral differential equations with distributed deviating arguments. Electron. J. Differ. Equ. 2017, 16, 1–12. [Google Scholar]
- Muhib, A.; Abdeljawad, T.; Moaaz, O.; Elabbasy, E.M. Oscillatory properties of odd-order delay differential equations with distribution deviating arguments. Appl. Sci. 2020, 10, 5952. [Google Scholar] [CrossRef]
- Liu, H.; Meng, F.; Liu, P. Oscillation and asymptotic analysis on a new generalized Emden–Fowler equation. Appl. Math. Comput. 2012, 219, 2739–2748. [Google Scholar] [CrossRef]
- Al-Jaser, A.; Qaraad, B.; Bazighifan, O.; Iambor, L.F. Second-Order Neutral Differential Equations with Distributed Deviating Arguments: Oscillatory Behavior. Mathematics 2023, 11, 2605. [Google Scholar] [CrossRef]
- Aldiaiji, M.; Qaraad, B.; Iambor, L.F.; Elabbasy, E.M. On the Asymptotic Behavior of Class of Third-Order Neutral Differential Equations with Symmetrical and Advanced Argument. Symmetry 2023, 15, 1165. [Google Scholar] [CrossRef]
- Cesarano, C.; Moaaz, O.; Qaraad, B.; Muhib, A. Oscillatory and asymptotic properties of higher-order quasilinear neutral differential equations. AIMS Math. 2021, 6, 11124–11138. [Google Scholar] [CrossRef]
- Santra, S.S.; Khedher, K.M.; Moaaz, O.; Muhib, A.; Yao, S.W. Second-order impulsive delay differential systems: Necessary and sufficient conditions for oscillatory or asymptotic behavior. Symmetry 2021, 13, 722. [Google Scholar] [CrossRef]
- Baculikova, B. Properties of third-order nonlinear functional differential equations with mixed arguments. Abstr. Appl. Anal. 2011, 2011, 857860. [Google Scholar] [CrossRef] [Green Version]
- Moaaz, O.; Dassios, I.; Muhsin, W.; Muhib, A. Oscillation Theory for Non-Linear Neutral Delay Differential Equations of Third Order. Appl. Sci. 2020, 10, 4855. [Google Scholar] [CrossRef]
- Aktas, M.F.; Tiryaki, A.; Zafer, A. Oscillation criteria for third-order nonlinear functional differential equations. Appl. Math. Lett. 2010, 23, 756–762. [Google Scholar] [CrossRef] [Green Version]
- Grace, S.R.; Dzurina, J.; Jadlovska, I.; Li, T. An improved approach for studying oscillation of second-order neutral delay differential equations. J. Ineq. Appl. 2018, 2018, 193. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Han, Z.; Zhao, P.; Sun, S. Oscillation of even-order neutral delay differential equations. Adv. Differ. Equ. 2010, 2010, 184180. [Google Scholar] [CrossRef]
- Dzurina, J.; Baculikova, B.; Jadlovska, I. Oscillation of solutions to fourth-order trinomial delay ditterential equations. Electron. Differ. Equ. 2015, 2015, 1–10. [Google Scholar]
- Bazighifan, O.; El-Nabulsi, R.A.; Moaaz, O. Asymptotic Properties of Neutral Differential Equations with Variable Coefficients. Axioms 2020, 9, 96. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Bohner, M.; Li, T.; Zhang, C. A new approach in the study of oscillatory behavior of even-order neutral delay differential equations. Appl. Math. Comput. 2013, 225, 787–794. [Google Scholar] [CrossRef]
- Moaaz, O.; Cesarano, C.; Muhib, A. Some new oscillation results for fourth-order neutral differential equations. Eur. J. Pure Appl. Math. 2020, 13, 185–199. [Google Scholar] [CrossRef]
- Li, T.; Rogovchenko, Y.V. On asymptotic behavior of solutions to higher order sublinear Emden-Fowler delay differential equations. Appl. Math. Lett. 2017, 67, 53–59. [Google Scholar] [CrossRef]
- Muhib, A.; Elabbasy, E.M.; Moaaz, O. New oscillation criteria for differential equations with sublinear and superlinear neutral terms. Turk. J. Math. 2021, 45, 919–928. [Google Scholar] [CrossRef]
- Elabbasy, E.M.; Cesarano, C.; Bazighifan, O.; Moaaz, O. Asymptotic and Oscillatory Behavior of Solutions of a Class of Higher Order Differential Equation. Symmetry 2019, 11, 1434. [Google Scholar] [CrossRef] [Green Version]
- Bazighifan, O.; Moaaz, O.; El-Nabulsi, R.A.; Muhib, A. Some New Oscillation Results for Fourth-Order Neutral Differential Equations with Delay Argument. Symmetry 2020, 12, 1248. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Grace, S.R.; O’Regan, D. Oscillation Theory for Difference and Functional Differential Equations; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000. [Google Scholar]
- Baculikova, B.; Dzurina, J. On certain inequalities and their applications in the oscillation theory. Adv. Differ. Equ. 2013, 2013, 165. [Google Scholar] [CrossRef] [Green Version]
- Philos, C.G. On the existence of nonoscillatory solutions tending to zero at ∞ for differential equations with positive delays. Arch. Math. 1981, 36, 168–178. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsharidi, A.K.; Muhib, A.; Elagan, S.K. Neutral Differential Equations of Higher-Order in Canonical Form: Oscillation Criteria. Mathematics 2023, 11, 3300. https://doi.org/10.3390/math11153300
Alsharidi AK, Muhib A, Elagan SK. Neutral Differential Equations of Higher-Order in Canonical Form: Oscillation Criteria. Mathematics. 2023; 11(15):3300. https://doi.org/10.3390/math11153300
Chicago/Turabian StyleAlsharidi, Abdulaziz Khalid, Ali Muhib, and Sayed K. Elagan. 2023. "Neutral Differential Equations of Higher-Order in Canonical Form: Oscillation Criteria" Mathematics 11, no. 15: 3300. https://doi.org/10.3390/math11153300
APA StyleAlsharidi, A. K., Muhib, A., & Elagan, S. K. (2023). Neutral Differential Equations of Higher-Order in Canonical Form: Oscillation Criteria. Mathematics, 11(15), 3300. https://doi.org/10.3390/math11153300