Research on Financial Default Model with Stochastic Intensity Using Filtered Likelihood Method
Abstract
:1. Introduction
2. Explanation of Related Concepts
2.1. The CIR Process
2.2. The Cox Process
2.3. The Hawkes Process
3. Financial Default Marked Point Process Model
4. Filter Likelihood Method
5. Properties and Proofs of Filtered Likelihood Estimation
6. Two Intensity Parameter Models
6.1. The First Model
6.2. The Second Model
6.3. Nature of Parameter Estimation for Both Models
7. Model Comparison and Empirical Analysis
7.1. Model Variable Study
7.2. Comparative Analysis of the Model
8. Conclusions and Recommendations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shreve, S. Stochastic Calculus for Finance-Continuous Times Models; Springer: New York, NY, USA, 2003; pp. 125–251. [Google Scholar]
- Bremnud, P. Point Process and Queues-Martingale Dynamics; Springer: New York, NY, USA, 1980; pp. 150–233. [Google Scholar]
- Gordy, M.B. A Risk-Factor Model Foundation for Ratings-Based Bank Capital Rules. Journey Financ. Intermediat. 2003, 12, 199–232. [Google Scholar] [CrossRef] [Green Version]
- Das, S.; Duffie, D.; Kapadia, N.; Saita, L. Common Failings: How Corporate Defaults are Correlated. J. Financ. 2006, 62, 93–117. [Google Scholar] [CrossRef]
- Duffie, D.; Saita, L.; Wang, K. Multi-period corporate default prediction with stochastic covariates. J. Financ. Econ. 2007, 83, 635–665. [Google Scholar] [CrossRef] [Green Version]
- Azizpour, S.; Giesecke, K.; Schwenkler, G. Exploring the sources of default Clustering. J. Financ. Econ. 2018, 129, 154–183. [Google Scholar] [CrossRef]
- Hawkes, A.G. Spectra of some self-exciting and mutually exciting point processes. Biometrika 1971, 58, 83–90. [Google Scholar] [CrossRef]
- Chen, Y.S.; Zou, H.W.; Cai, L.X. Credit Default Swap Pricing Based on Supply Chain Default Transmission. South China Financ. 2018, 8, 33–42. [Google Scholar]
- Wang, X.; Hou, S.; Shen, J. Default clustering of the nonfinancial sector and systemic risk: Evidence from China. Econ. Model. 2021, 96, 196–208. [Google Scholar] [CrossRef]
- Li, C.; Ma, Y.; Xiao, W.L. Pricing defaultable bonds under Hawkes jump-diffusion processes. Financ. Res. Lett. 2022, 47, 102738. [Google Scholar]
- Xing, K.; Luo, D.; Liu, L. Macroeconomic conditions, corporate default, and default clustering. Econ. Model. 2023, 118, 106079. [Google Scholar] [CrossRef]
- Ogata, Y. The Asymptotic Behavior Of MaxiumLikehood Estimators for Stationary Point Processes. Ann. Inst. Stat. Math. 1978, 30, 243–261. [Google Scholar] [CrossRef]
- Fernando, B.P.W.; Sritharan, S.S. Nonlinear Filtering of Stochastic Navier-Stokes Equation with Ito-Levy Noise. Stoch. Anal. Appl. 2013, 31, 381–426. [Google Scholar] [CrossRef]
- Lando, D. On Cox Processes and Credit Risky Securities. Rev. Deriv. Res. 1998, 2, 99–120. [Google Scholar] [CrossRef]
- Elliott, R.J.; Chuin, C.; Siu, T.K. The Discretization Filter: On filtering and estimation of a threshold stochastic volatility model. Appl. Math. Comput. 2011, 218, 61–75. [Google Scholar]
- Giesecke, K.; Schwenkler, G. Filtered likelihood for point processes. J. Econom. 2018, 204, 33–53. [Google Scholar] [CrossRef]
- Gourieroux, C.; Monfort, A.; Mouabbi, S.; Renne, J.P. Disastrous defaults. Rev. Financ. 2021, 25, 1727–1772. [Google Scholar] [CrossRef]
- Duffie, D.; Eckner, A.; Horel, G. Frailty Correlated Default. J. Financ. 2009, 64, 2089–2123. [Google Scholar] [CrossRef]
- Chakrabarty, B.; Zhang, G. Credit contagion channels: Market microstructure evidence from Lehman Brothers’ bankruptcy. Financ. Manag. 2012, 41, 320–343. [Google Scholar] [CrossRef]
- Collin-Dufresn, P.; Goldstein, R.S.; Martin, J.S. The Determinants of Credit Spread Changes. J. Financ. 2001, 68, 2177–2207. [Google Scholar] [CrossRef]
- Liu, X.D.; Jin, X.J. Parameter estimation via regime switching model for high frequency data. J. Shenzhen Univ. (Sci. Eng.) 2018, 35, 432–440. [Google Scholar] [CrossRef]
- Liu, X.D.; Wang, X.R. Semi-Markov regime switching interest rate term structure models—Based on minimal Tsallis entropy martingale measure. Syst. Eng.-Theory Pract. 2017, 37, 1136–1143. [Google Scholar]
- Xu, Y.X.; Wang, H.W.; Zhang, X. Application of EM algorithm to eatimate hyper parameters of the random parameters of Wiener process. Syst. Eng. Electron. 2015, 37, 707–712. [Google Scholar]
- Giesecke, K.; Schwenkler, G. Simulated likelihood estimators for discretely observed jump–diffusions. J. Econom. 2019, 213, 297–320. [Google Scholar] [CrossRef]
- Duffie, D.; Pan, J.; Singleton, K.J. Transform Analysis and Asset Pricing for Affine Jump-diffusions. Econometrica 2000, 68, 1343–1376. [Google Scholar] [CrossRef] [Green Version]
- Hou, Z.T.; Ma, Y.; Liu, L. Estimation of the stationary distribution parameters based on the forward equation. Acta Math. Sci. 2016, 36, 997–1009. [Google Scholar]
- Wang, S.W.; Wen, C.L. The Wavelet Packet Maximum Likelihood Estimation Method of Long Memory Process Parameters. J. Henan Univ. (Nat. Sci.) 2006, 2, 79–84. [Google Scholar]
Value | |
---|---|
Skew | 6.78 |
Kurtosis | 66.84 |
Jarque–Bera | 67,966.17 |
p-value | 0.00 |
Value | |
---|---|
t | 3.98 |
df | 23 |
p-value | 0.00 |
cor | 0.64 |
Parameter | The First Model Initial Value | The First Model Parameter Estimation | The Second Model Initial Value | The Second Model Parameter Estimation |
---|---|---|---|---|
4.0 | 3.0 | 3.0 | 3.0 | |
3.0 | 3.0 | 3.0 | 3.0 | |
2.0 | 2.0 | 2.0 | 2.0 | |
0.2 | 2.5 | 2.5 | −0.125 | |
0.5 | −0.5 | −0.5 | 0.5 | |
2.0 | 1.5 | 1.0 | 0.2 | |
1.0 | 0 | 0.2 | 5.0 | |
4.0 | 5.0 | 5.0 | 0.2 | |
−0.5 | −0.125 | −0.125 | 0.4 | |
0.53 | 0.5 | 0.5 | 0.32 |
The First Model | The Second Model | |
---|---|---|
AIC | 785 | 744 |
BIC | 776 | 753 |
0.108 | 0.325 | |
MLE | 503 | 396 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Wu, J.; Li, X. Research on Financial Default Model with Stochastic Intensity Using Filtered Likelihood Method. Mathematics 2023, 11, 3061. https://doi.org/10.3390/math11143061
Liu X, Wu J, Li X. Research on Financial Default Model with Stochastic Intensity Using Filtered Likelihood Method. Mathematics. 2023; 11(14):3061. https://doi.org/10.3390/math11143061
Chicago/Turabian StyleLiu, Xiangdong, Jiahui Wu, and Xianglong Li. 2023. "Research on Financial Default Model with Stochastic Intensity Using Filtered Likelihood Method" Mathematics 11, no. 14: 3061. https://doi.org/10.3390/math11143061
APA StyleLiu, X., Wu, J., & Li, X. (2023). Research on Financial Default Model with Stochastic Intensity Using Filtered Likelihood Method. Mathematics, 11(14), 3061. https://doi.org/10.3390/math11143061