Canard Mechanism and Rhythm Dynamics of Neuron Models
Abstract
:1. Introduction
2. Geometric Singular Perturbation Theory
- Layer Problem (3)
- (i)
- For any , there exists a -smooth manifold (not necessarily unique, but exponentially approximating each other), locally invariant under flow (1), that is, approaches .
- (ii)
- For any , there exist -smooth stable and unstable manifolds
- (iii)
- The foliation is (positively) invariant, that is
- (iv)
- The foliation is (negatively) invariant, that is
- Reduced Problem (4)
- (i)
- If , we call it a general singularity;
- (ii)
- If and , we call it a folded singularity.
- (i)
- In the case where is a real number, denote the ratio as . Without loss of generality, assume . The corresponding singularity is either a folded saddle if , or a folded node if .
- (ii)
- If is complex conjugate and , then the corresponding singularity is the folded focus.
3. Singular Canards
3.1. Limit-Cycle Canard
3.1.1. Singular Hopf Canards for Fast/Slow Time Scale Systems
3.1.2. Singular Hopf-like Bifurcation for Systems with One Time Scale
3.2. Folded Singular Canards for Fast/Slow Time Systems
- (i)
- The perturbation of the ()-dimensional set of the singular strong canard to the ()-dimensional set of the largest strong canard is known as the main strong canard;
- (ii)
- If , the ()-dimensional set of the singular weak canard is perturbed to the ()-dimensional set of the largest weak canard and called the main weak canard;
- (iii)
- If and , there is a set of k maximum canards, all ()-dimensional, called the secondary canards. The set of k secondary canards follows a criterion to approximate the main strong canard set in two levels of attraction and repulsion;
- (iv)
- If and , the main strong canard set twists once around the main weak canard set in the neighbourhood of fold line F; meanwhile, the jth set of the secondary canard, , twists times around the main weak canard set in the neighbourhood of fold line F; the twist here is a half-rotation. Each maximal canard set has a different rotation number;
- (v)
- Main weak canards at the folded node have a cross-critical bifurcation, for and odd, and a tuning-fork bifurcation for even .
3.3. Torus Canards
- (C1)
- The speed of slow flow is bounded away from zero: ;
- (C2)
- M is a smooth curve;
- (C3)
- The lift of curve M to the covering coordinate plane is contained within the fundamental square and is convex, meaning, in particular, that there are two jump points (straight and inverse jumps), the two points on the far right and the far left of M; we denote them as and , respectively;
- (C4)
- For any point , the following nondegenerate assumption holds:
- (C5)
- The nondegenerate assumption at the jump point is valid:
- (i)
- For some , .
- (ii)
- .
- (iii)
- For every ε sufficiently small, not belonging to any , the rotation number is an integer. The system has exactly two hyperbolic periodic trajectories, one stable and one unstable, and the unstable one contains canards.
- (iv)
- For every sufficiently small , the system has exactly two periodic trajectories, both of which are a hyperbolic torus canard, and one is stable and the other is unstable.
4. Canards and the Discharge Rhythm of Neuron Model
4.1. Limit-Cycle Canards and MMOs of Neuron Model
4.2. Folded-Saddle Canards, Firing-Threshold Manifold, and Parabolic Bursters of Neuron Model
4.3. Folded-Node Canards and MMOs in Neuron Model
4.4. Torus Canards and Transition between Spiking and Bursting
4.5. “Blue Sky Catastrophe” and Transition between Spiking and Bursting
5. Summary and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
MMOs | Mixed-mode oscillations |
References
- Diener, F.; Diener, M. Chasse au canard. I. Les canards. Collect. Math. 1981, 1, 37–74. [Google Scholar]
- Diener, M. The canard unchained or how fast/slow dynamical systems bifurcate. Math. Intell. 1984, 6, 38–49. [Google Scholar] [CrossRef]
- Diener, M. Regularizing microscopes and rivers. SIAM J. Math. Anal. 1994, 25, 148–173. [Google Scholar] [CrossRef]
- Desroches, M.; Guillamon, A.; Ponce, E.; Prohens, R.; Rodrigues, S.; Teruel, A.E. Canards, folded nodes and mixed-mode oscillations in piecewise-linear slow-fast systems. SIAM Rev. 2016, 58, 653–691. [Google Scholar] [CrossRef] [Green Version]
- Harvey, E.; Kirk, V.; Osinga, H.M.; Sneyd, J.; Wechselberger, M. Understanding anomalous delays in a model of intracellular calcium dynamics. Chaos 2010, 20, 045104. [Google Scholar] [CrossRef] [Green Version]
- Mitry, J.; McCarthy, M.; Kopell, N.; Wechselberger, M. Excitable neurons, firing threshold manifolds and canards. J. Math. Neurosci. 2013, 3, 12. [Google Scholar] [CrossRef] [Green Version]
- Wieczorek, S.; Ashwin, P.; Luke, C.M.; Cox, P.M. Excitability in ramped systems: The compost-bomb instability. Proc. R. Soc. Math. Phys. Eng. Sci. 2011, 467, 1243–1269. [Google Scholar]
- McCarthy, M.; Kopell, N. The effect of propofol anesthesia on rebound spiking. SIAM J. Appl. Dyn. Syst. 2012, 11, 1674–1697. [Google Scholar] [CrossRef]
- Wechselberger, M.; Mitry, J.; Rinzel, J. Canard theory and excitability. In Nonautonomous Dynamical Systems in the Life Sciences; Kloeden, P.E., Pötzsche, C., Eds.; Springer: Cham, Switzerland, 2013; pp. 89–132. [Google Scholar]
- Wechselberger, M. À propos de canards (Apropos canards). Trans. Am. Math. Soc. 2012, 364, 3289–3309. [Google Scholar] [CrossRef]
- Benoit, E. Chasse au canard. Collect. Math. 1981, 32, 37–119. [Google Scholar]
- Szmolyan, P.; Wechselberger, M. Canards in R3. J. Differ. Equ. 2001, 177, 419–453. [Google Scholar] [CrossRef] [Green Version]
- Guckenheimer, J.; Ilyashenko, Y. The duck and the devil: Canards on the staircase. Mosc. Math. J. 2002, 1, 27–47. [Google Scholar] [CrossRef] [Green Version]
- Schurov, I.V. Ducks on the torus: Existence and uniqueness. J. Dyn. Control Syst. 2010, 16, 267–300. [Google Scholar] [CrossRef] [Green Version]
- Schurov, I.; Solodovnikov, N. Duck factory on the two-torus: Multiple canard cycles without geometric constraints. J. Dyn. Control Syst. 2016, 23, 481–498. [Google Scholar] [CrossRef] [Green Version]
- Benoit, E. Systemes lents-rapides dans R3 et leurs canards. Société Mathématique de France Astérisque 1983, 109–110, 159–191. [Google Scholar]
- Eckhaus, W. Relaxation oscillations including a standard chase on French ducks. In Asymptotic Analysis II; Verhulst, F., Ed.; Springer: Berlin, Germany, 1983; pp. 449–494. [Google Scholar]
- Mishchenko, E.F.; Rozov, N.K. Differential equations with small parameters and relaxation oscillations. In Mathematical Concepts and Methods in Science and Engineering; Springer: Boston, MA, USA, 1980. [Google Scholar]
- Dumortier, F.; Roussarie, R. Canard Cycles and Center Manifolds; American Mathematical Society: Providence, RI, USA, 1996. [Google Scholar]
- Krupa, M.; Szmolyan, P. Relaxation oscillation and canard explosion. J. Differ. Equ. 2001, 174, 312–368. [Google Scholar] [CrossRef] [Green Version]
- Szmolyan, P.; Wechselberger, M. Relaxation oscillations in R3. J. Differ. Equ. 2004, 200, 69–104. [Google Scholar] [CrossRef] [Green Version]
- Dumortier, F. Techniques in the theory of local bifurcations: Blow-up, normal forms, nilpotent bifurcations, singular perturbations. In Bifurcations and Periodic Orbits of Vector Fields; Schlomiuk, D., Ed.; Springer: Dordrecht, The Netherlands, 1993; pp. 19–73. [Google Scholar]
- Dumortier, F. Local study of planar vector fields: Singularities and their unfoldings. Stud. Math. Phys. 1991, 2, 161–241. [Google Scholar]
- Krupa, M.; Szmolyan, P. Geometric analysis of the singularly perturbed planar fold. In Multiple-Time-Scale Dynamical Systems; Jones, C.K.R.T., Khibnik, A.I., Eds.; Springer: New York, NY, USA, 2001. [Google Scholar]
- Krupa, M.; Szmolyan, P. Extending slow manifolds near transcritical and pitchfork singularities. Nonlinearity 2001, 14, 1473. [Google Scholar] [CrossRef]
- Krupa, M.; Szmolyan, P. Extending geometric singular perturbation theory to nonhyperbolic points—Fold and canard points in two dimensions. SIAM J. Math. Anal. 2001, 33, 286–314. [Google Scholar] [CrossRef] [Green Version]
- Christopher, K.R.T.J. Geometric singular perturbation theory. In Dynamical Systems; Johnson, R., Ed.; Springer: Berlin/Heidelberg, Germany, 1995; pp. 44–118. [Google Scholar]
- Kaper, T.J. An introduction to geometric methods and dynamical systems theory for singular perturbation problems. Proc. Symp. Appl. Math. 1999, 56, 85–131. [Google Scholar]
- Robert, E.O.M.J. Singular Perturbation Methods for Ordinary Differential Equations; Springer: New York, NY, USA, 1991. [Google Scholar]
- Fenichel, N. Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equ. 1979, 31, 53–98. [Google Scholar] [CrossRef] [Green Version]
- Guckenheimer, J.; Hoffman, K.; Weckesser, W. Numerical computation of canards. Int. J. Bifurcat. Chaos 2000, 10, 2669–2687. [Google Scholar] [CrossRef] [Green Version]
- Desroches, M.; Krauskopf, B.; Osinga, H.M. Numerical continuation of canard orbits in slow–fast dynamical systems. Nonlinearity 2010, 23, 739–765. [Google Scholar] [CrossRef]
- Vo, T.; Bertram, R.; Wechselberger, M. Bifurcations of canard-induced mixed mode oscillations in a pituitary Lactotroph model. Discret. Contin. Dyn. Syst. 2012, 32, 2879–2912. [Google Scholar] [CrossRef]
- Rotstein, H.G.; Wechselberger, M.; Kopell, N. Canard induced mixed-mode oscillations in a medial entorhinal cortex layer II stellate cell model. SIAM J. Appl. Dyn. Syst. 2008, 7, 1582–1611. [Google Scholar] [CrossRef]
- Wechselberger, M.; Weckesser, W. Homoclinic clusters and chaos associated with a folded node in a stellate cell model. Discret. Contin. Dyn. Syst. 2009, 2, 829–850. [Google Scholar] [CrossRef]
- Desroches, M.; Krauskopf, B.; Osinga, H.M. The geometry of slow manifolds near a folded node. SIAM J. Appl. Dyn. Syst. 2008, 7, 1131–1162. [Google Scholar] [CrossRef] [Green Version]
- Guckenheimer, J.; Haiduc, R. Canards at folded nodes. Mosc. Math. J. 2005, 5, 91–103. [Google Scholar] [CrossRef] [Green Version]
- Wechselberger, M. Existence and bifurcation of canards in R3 in the case of a folded node. SIAM J. Appl. Dyn. Syst. 2005, 4, 101–139. [Google Scholar] [CrossRef]
- Desroches, M.; Krupa, M.; Rodrigues, S. Spike-adding in parabolic bursters: The role of folded-saddle canards. Phys. D 2016, 331, 58–70. [Google Scholar] [CrossRef] [Green Version]
- Mitry, J.; Wechselberger, M. Folded saddles and faux canards. SIAM J. Appl. Dyn. Syst. 2017, 16, 546–596. [Google Scholar] [CrossRef]
- Krupa, M.; Wechselberger, M. Local analysis near a folded saddle-node singularity. J. Differ. Equ. 2010, 248, 2841–2888. [Google Scholar] [CrossRef]
- Vo, T.; Wechselberger, M. Canards of folded saddle-node type I. SIAM J. Math. Anal. 2015, 47, 3235–3283. [Google Scholar] [CrossRef]
- Milik, A.; Szmolyan, P. Multiple time scales and canards in a chemical oscillator. In Multiple-Time-Scale Dynamical Systems; Jones, C.K.R.T., Khibnik, A.I., Eds.; Springer: New York, NY, USA, 2001; pp. 117–140. [Google Scholar]
- Guckenheimer, J. Singular hopf bifurcation in systems with two slow variables. SIAM J. Appl. Dyn. Syst. 2008, 7, 1355–1377. [Google Scholar] [CrossRef]
- Brøns, M.; Kaasen, R. Canards and mixed-mode oscillations in a forest pest model. Theor. Popul. Biol. 2010, 77, 238–242. [Google Scholar] [CrossRef]
- Brøns, M.; Desroches, M.; Krupa, M. Mixed-mode oscillations due to a singular hopf bifurcation in a forest pest model. Math. Popul. Stud. 2015, 22, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Shchurov, I. Canard cycles in generic fast-slow systems on the torus. T. Mosc. Math. Soc. 2010, 71, 175–207. [Google Scholar] [CrossRef] [Green Version]
- Kramer, M.A.; Traub, R.D.; Kopell, N.J. New dynamics in cerebellar Purkinje cells: Torus canards. Phys. Rev. Lett. 2008, 101, 068103. [Google Scholar] [CrossRef] [Green Version]
- Benes, G.N.; Barry, A.M.; Kaper, T.J.; Kramer, M.A.; Burke, J. An elementary model of torus canards. Chaos 2011, 21, 023131. [Google Scholar] [CrossRef] [Green Version]
- Desroches, M.; Burke, J.; Kaper, T.J.; Kramer, M.A. Canards of mixed type in a neural burster. Phys. Rev. E 2012, 85, 021920. [Google Scholar] [CrossRef] [Green Version]
- Burke, J.; Desroches, M.; Barry, A.M.; Kaper, T.J.; Kramer, M.A. A showcase of torus canards in neuronal bursters. J. Math. Neurosci. 2012, 2, 3. [Google Scholar] [CrossRef] [Green Version]
- Malashchenko, T.; Shilnikov, A.; Cymbalyuk, G. Six types of multistability in a neuronal model based on slow calcium current. PLoS ONE 2011, 6, e21782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ju, H.; Neiman, A.B.; Shilnikov, A.L. Bottom-up approach to torus bifurcation in neuron models. Chaos 2018, 28, 106317. [Google Scholar] [CrossRef] [Green Version]
- Wojcik, J.; Shilnikov, A. Voltage interval mappings for activity transitions in neuron models for elliptic bursters. Phys. D 2011, 240, 1164–1180. [Google Scholar] [CrossRef] [Green Version]
- Shilnikov, A.; Cymbalyuk, G. Transition between tonic spiking and bursting in a neuron model via the blue-sky catastrophe. Phys. Rev. Lett. 2005, 94, 048101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberts, K.L.; Rubin, J.E.; Wechselberger, M. Averaging, folded singularities, and torus canards: Explaining transitions between bursting and spiking in a coupled neuron model. SIAM J. Appl. Dyn. Syst. 2015, 14, 1808–1844. [Google Scholar] [CrossRef]
- Brøns, M. Canards and Excitability in Liénard Equations; Department of Mathematics, Denmark’s Technical College: Lyngby, Denmark, 1989. [Google Scholar]
- Desroches, M.; Krupa, M.; Rodrigues, S. Inflection, canards and excitability threshold in neuronal models. J. Math. Biol. 2013, 67, 989–1017. [Google Scholar] [CrossRef]
- Kuehn, C. From first Lyapunov coefficients to maximal canards. Int. J. Bifurcat. Chaos 2010, 20, 1467–1475. [Google Scholar] [CrossRef] [Green Version]
- Rotstein, H.G.; Kuske, R. Localized and asynchronous patterns via canards in coupled calcium oscillators. Phys. D 2006, 215, 46–61. [Google Scholar] [CrossRef]
- Drover, J.; Rubin, J.; Su, J.; Ermentrout, B. Analysis of a canard mechanism by which excitatory synaptic coupling can synchronize neurons at low firing frequencies. SIAM J. Appl. Math. 2004, 65, 69–92. [Google Scholar] [CrossRef] [Green Version]
- Ermentrout, B.; Wechselberger, M. Canards, clusters, and synchronization in a weakly coupled interneuron model. SIAM J. Appl. Dyn. Syst. 2009, 8, 253–278. [Google Scholar] [CrossRef]
- Sekikawa, M.; Inaba, N.; Yoshinaga, T.; Hikihara, T. Period-doubling cascades of canards from the extended Bonhoeffer–van der Pol oscillator. Phys. Lett. A 2010, 374, 3745–3751. [Google Scholar] [CrossRef] [Green Version]
- Nakano, H.; Honda, H.; Okazaki, H. Canards in a slow-fast continuous piecewise linear vector field. J. Anat. 2005, 105, 381–382. [Google Scholar]
- Itoh, M.; Murakami, H. Chaos and canards in the van der Pol equation with periodic forcing. Int. J. Bifurcat. Chaos 1994, 4, 1023–1029. [Google Scholar] [CrossRef]
- Brøns, M.; Krupa, M.; Wechselberger, M. Mixed mode oscillations due to the generalized canard phenomenon. Fields Inst. Commun. 2006, 49, 39–63. [Google Scholar]
- Itoh, M.; Chua, L.O. Canards and chaos in nonlinear systems. IEEE Int. Symp. Circuits Syst. 1992, 6, 2789–2792. [Google Scholar]
- Rubin, J.; Wechselberger, M. Giant squid-hidden canard: The 3D geometry of the Hodgkin-Huxley model. Biol. Cybern. 2007, 97, 5–32. [Google Scholar] [CrossRef]
- Moehlis, J. Canards for a reduction of the Hodgkin-Huxley equations. J. Math. Biol. 2006, 52, 141–153. [Google Scholar] [CrossRef]
- Sowers, R.B. Random perturbations of canards. J. Theor. Probab. 2008, 21, 824–889. [Google Scholar] [CrossRef]
- Zhezherun, A.A.; Pokrovskii, A.V. Topological method for analysis of periodic canards. Automat. Rem. Contr. 2009, 70, 967–981. [Google Scholar] [CrossRef]
- Durham, J.; Moehlis, J. Feedback control of canards. Chaos 2008, 18, 015110. [Google Scholar] [CrossRef] [PubMed]
- Valero, M.; Zutshi, I.; Yoon, E.; Buzsaki, G. Probing subthreshold dynamics of hippocampal neurons by pulsed optogenetics. Science 2022, 375, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Hodgkin, A.L.; Huxley, A.F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 1952, 117, 500–544. [Google Scholar] [CrossRef]
- Hodgkin, A.L.; Huxley, A.F. Current carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J. Physiol. 1952, 116, 449–472. [Google Scholar] [CrossRef]
- Hodgkin, A.L.; Huxley, A.F. The components of membrane conductance in the giant axon of Loligo. J. Physiol. 1952, 116, 473–496. [Google Scholar] [CrossRef]
- Hodgkin, A.L.; Huxley, A.F. The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J. Physiol. 1952, 116, 497–506. [Google Scholar] [CrossRef]
- Fitzhugh, R. Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1961, 1, 445–466. [Google Scholar] [CrossRef] [Green Version]
- Nagumo, J.; Arimoto, S.; Yoshizawa, S. An active pulse transmission line simulating a nerve axon. Proc. IRE 1962, 50, 2061–2070. [Google Scholar] [CrossRef]
- Morris, C.; Lecar, H. Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 1981, 35, 193–213. [Google Scholar] [CrossRef] [Green Version]
- Hindmarsh, J.L.; Rose, R.M. A model of neuronal bursting using three coupled first order differential equations. Proc. R. Soc. Lond. B Biol. Sci. 1984, 221, 87–102. [Google Scholar] [PubMed]
- Rinzel, J. Excitation dynamics: Insights from simplified membrane models. Fed. Proc. 1986, 44, 2944–2946. [Google Scholar]
- Rinzel, J. Bursting oscillations in an excitable membrane model. In Ordinary and Partial Differential Equations; Brian, D.S., Richard, J.J., Eds.; Springer: Berlin/Heidelberg, Germany, 1985. [Google Scholar]
- Rinzel, J.; Lee, Y.S. Dissection of a model for neuronal parabolic bursting. J. Math. Biol. 1987, 25, 653–675. [Google Scholar] [CrossRef] [PubMed]
- Sherman, A.; Rinzel, J. Rhythmogenic effects of weak electrotonic coupling in neuronal models. Proc. Nat. Acad. Sci. USA 1992, 89, 2471–2474. [Google Scholar] [CrossRef] [Green Version]
- Av-Ron, E.; Parnas, H.; Segel, L.A. A basic biophysical model for bursting neurons. Biol. Cybern. 1993, 69, 87–95. [Google Scholar] [CrossRef]
- Holden, L.; Erneux, T. Slow passage through a hopf bifurcation: From oscillatory to steady state solutions. SIAM J. Appl. Math. 1993, 53, 1045–1058. [Google Scholar] [CrossRef]
- Holden, L.; Erneux, T. Understanding bursting oscillations as periodic slow passages through bifurcation and limit points. J. Math. Biol. 1993, 31, 351–365. [Google Scholar] [CrossRef]
- Rush, M.E.; Rinzel, J. Analysis of bursting in a thalamic neuron model. Biol. Cybern. 1994, 71, 281–291. [Google Scholar] [CrossRef]
- Smolen, P.; Terman, D.; Rinzel, J. Properties of a bursting model with two slow inhibitory variables. SIAM J. Appl. Math. 1993, 53, 861–892. [Google Scholar] [CrossRef]
- Pernarowski, M. Fast subsystem bifurcations in a slowly varying Liénard system exhibiting bursting. SIAM J. Appl. Math. 1994, 54, 814–832. [Google Scholar] [CrossRef]
- Izhikevich, E.M. Neural excitability, spiking and bursting. Int. J. Bifurcat. Chaos 2000, 10, 1171–1266. [Google Scholar] [CrossRef] [Green Version]
- Izhikevich, E.M.; Hoppensteadt, F. Classification of bursting mappings. Int. J. Bifurcat. Chaos 2004, 14, 3847–3854. [Google Scholar] [CrossRef] [Green Version]
- Izhikevich, E.M. Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting; MIT Press: Cambridge, MA, USA, 2007. [Google Scholar]
- Lu, B.; Liu, S.; Jiang, X.; Wang, X. Bifurcation and spike adding transition in Chay-Keizer model. Int. J. Bifurcat. Chaos 2016, 26, 1650090. [Google Scholar] [CrossRef]
- Wang, J.; Liu, S.; Liu, X.; Zeng, Y. Bifurcation and firing patterns of the pancreatic β-Cell. Int. J. Bifurcat. Chaos 2015, 25, 1530024. [Google Scholar] [CrossRef]
- Wang, J.; Lu, B.; Liu, S.; Jiang, X. Bursting types and bifurcation analysis in the pre-Bötzinger complex respiratory rhythm neuron. Int. J. Bifurcat. Chaos 2017, 27, 1750010. [Google Scholar] [CrossRef]
- Zhan, F.; Liu, S.; Wang, J.; Lu, B. Bursting patterns and mixed-mode oscillations in reduced Purkinje model. Int. J. Mod. Phys. B 2018, 32, 1850043. [Google Scholar] [CrossRef]
- Yang, Z.; Lu, Q. Different types of bursting in Chay neuronal model. Sci. China Ser. G 2008, 51, 687–698. [Google Scholar] [CrossRef]
- Desroches, M.; Rinzel, J.; Rodrigues, S. Classification of bursting patterns: A tale of two ducks. PLoS Comput. Biol. 2022, 18, e1009752. [Google Scholar] [CrossRef]
- Ersoz, E.K.; Desroches, M.; Krupa, M.; Clement, F. Canard-mediated (De)synchronization in coupled phantom bursters. SIAM J. Appl. Dyn. Syst. 2016, 15, 580–608. [Google Scholar] [CrossRef]
- Hasan, C.R.; Krauskopf, B.; Osinga, H.M. Saddle slow manifolds and canard orbits in R4 and application to the full Hodgkin–Huxley model. J. Math. Neurosci. 2018, 8, 5. [Google Scholar] [CrossRef]
- Albizuri, J.U.; Desroches, M.; Krupa, M.; Rodrigues, S. Inflection, canards and folded singularities in excitable systems: Application to a 3D FitzHugh–Nagumo model. J. Nonlinear Sci. 2020, 30, 3265–3291. [Google Scholar] [CrossRef]
- Desroches, M.; Kowalczyk, P.; Rodrigues, S. Spike-adding and reset-induced canard cycles in adaptive integrate and fire models. Nonlinear Dyn. 2021, 104, 2451–2470. [Google Scholar] [CrossRef]
- Ersoz, E.K.; Desroches, M.; Krupa, M. Synchronization of weakly coupled canard oscillators. Phys. D 2017, 349, 46–61. [Google Scholar] [CrossRef] [Green Version]
- Desroches, M.; Kirk, V. Spike-adding in a canonical three-time-scale model: Superslow explosion and folded-saddle canards. SIAM J. Appl. Dyn. Syst. 2018, 17, 1989–2017. [Google Scholar] [CrossRef] [Green Version]
- Ersoz, E.K.; Desroches, M.; Guillamon, A.; Rinzel, J.; Tabak, J. Canard-induced complex oscillations in an excitatory network. J. Math. Biol. 2020, 80, 2075–2107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lizarraga, I.; Wechselberger, M. Computational singular perturbation method for nonstandard slow-fast systems. SIAM J. Appl. Dyn. Syst. 2020, 19, 994–1028. [Google Scholar] [CrossRef]
- Wechselberger, M. Geometric Singular Perturbation Theory beyond the Standard Form. In Frontiers in Applied Dynamical Systems: Reviews and Tutorials; Springer: Berlin/Heidelberg, Germany, 2020; Volume 6. [Google Scholar]
- Jelbart, S.; Pages, N.; Kirk, V.; Sneyd, J.; Wechselberger, M. Process-oriented geometric singular perturbation theory and calcium dynamics. SIAM J. Appl. Dyn. Syst. 2022, 21, 982–1029. [Google Scholar] [CrossRef]
- Booth, V.; Carr, T.W.; Erneux, T. Near-threshold bursting is delayed by a slow passage near a limit point. SIAM J. Appl. Math. 1997, 57, 1406–1420. [Google Scholar]
- Baer, S.M.; Erneux, T.; Rinzel, J. The slow passage through a hopf bifurcation: Delay, memory effects, and resonance. SIAM J. Appl. Math. 1989, 49, 55–71. [Google Scholar] [CrossRef]
- Neishtadt, A.I. Persistence of stability loss for dynamical bifurcations I. Diff. Equ. 1987, 23, 1385–1391. [Google Scholar]
- Neishtadt, A.I. Persistence of stability loss for dynamical bifurcations II. Diff. Equ. 1988, 24, 171–176. [Google Scholar]
- Larter, R.; Steinmetz, C.G. Chaos via mixed-mode oscillations. Philos. Trans. R. Soc. A 1991, 337, 291–298. [Google Scholar]
- Koper, M.T.M. Bifurcations of mixed-mode oscillations in a three-variable autonomous Van der Pol-Duffing model with a cross-shaped phase diagram. Phys. D 1995, 80, 72–94. [Google Scholar] [CrossRef]
- Arneodo, A.; Argoul, F.; Elezgaray, J.; Richetti, P. Homoclinic chaos in chemical systems. Phys. D 1993, 62, 134–169. [Google Scholar] [CrossRef]
- Guckenheimer, J.; Harris-Warrick, R.; Peck, J.; Willms, A. Bifurcation, bursting, and spike frequency adaptation. J. Comput. Neurosci. 1997, 4, 257–277. [Google Scholar] [CrossRef]
- Guckenheimer, J.; Willms, A.R. Asymptotic analysis of subcritical Hopf–Homoclinic bifurcation. Phys. D 2000, 139, 195–216. [Google Scholar] [CrossRef] [Green Version]
- Desroches, M.; Guckenheimer, J.; Krauskopf, B.; Kuehn, C.; Osinga, H.M.; Wechselberger, M. Mixed-mode oscillations with multiple time scales. SIAM Rev. 2012, 54, 211–288. [Google Scholar] [CrossRef]
- Lu, B.; Liu, S.; Liu, X. Advances in the dynamics of mixed mode oscillations in neuron models (In Chinese). J. Dynam. Control 2016, 14, 481–491. [Google Scholar]
- Lu, B.; Liu, S.; Jiang, X.; Wang, J.; Wang, X. The mixed-mode oscillations in Av-Ron-Parnas-Segel model. Discret. Contin. Dyn. Syst. 2017, 10, 487–504. [Google Scholar] [CrossRef] [Green Version]
- Zhan, F.; Liu, S.; Zhang, X.; Wang, J.; Lu, B. Mixed-mode oscillations and bifurcation analysis in a pituitary model. Nonlinear Dynam. 2018, 94, 807–826. [Google Scholar] [CrossRef]
- Ni, M. Asymptotic Theory in Singular Perturbation Problems; Higher Education Press: Beijing, China, 2009. (In Chinese) [Google Scholar]
- Takens, F. Constrained equations; a study of implicit differential equations and their discontinuous solutions. In Structural Stability, the Theory of Catastrophes, and Applications in the Sciences; Hilton, P., Ed.; Springer: Berlin/Heidelberg, Germany, 1976; pp. 143–234. [Google Scholar]
- Kuznetsov, Y.A. Elements of Applied Bifurcation Theory; Springer: New York, NY, USA, 1998. [Google Scholar]
- Lu, B. Mixed Mode Oscillations and Dynamics of Neurons. Master’s Thesis, South China University of Technology, Guangzhou, China, 2016. (In Chinese). [Google Scholar]
- Desroches, M.; Kaper, T.J.; Krupa, M. Mixed-mode bursting oscillations: Dynamics created by a slow passage through spike-adding canard explosion in a square-wave burster. Chaos 2013, 23, 046106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Best, J.; Borisyuk, A.; Rubin, J.; Terman, D.; Wechselberger, M. The dynamic range of bursting in a model respiratory pacemaker network. SIAM J. Appl. Dyn. Syst. 2005, 4, 1107–1139. [Google Scholar] [CrossRef] [Green Version]
- Shilnikov, A.; Shilnikov, L.; Turaev, D. Blue sky catastrophe in singularly perturbed systems. Mosc. Math. J. 2005, 5, 269–282. [Google Scholar] [CrossRef]
- Shilnikov, A.; Calabrese, R.L.; Cymbalyuk, G. Mechanism of bistability: Tonic spiking and bursting in a neuron model. Phys. Rev. E 2005, 71, 056214. [Google Scholar] [CrossRef] [Green Version]
- Shilnikov, A.; Cymbalyuk, G. Homoclinic bifurcations of periodic orbits on a route from tonic spiking to bursting in neuron models. Regul. Chaotic Dyn. 2004, 9, 281–297. [Google Scholar] [CrossRef]
- Cymbalyuk, G.; Shilnikov, A. Coexistence of tonic spiking oscillations in a leech neuron model. J. Comput. Neurosci. 2005, 18, 255–263. [Google Scholar] [CrossRef]
- Cymbalyuk, G.S.; Calabrese, R.L.; Shilnikov, A.L. How a neuron model can demonstrate co-existence of tonic spiking and bursting. Neurocomputing 2005, 65–66, 869–875. [Google Scholar] [CrossRef]
- Malashchenko, T.; Shilnikov, A.; Cymbalyuk, G. Bistability of bursting and silence regimes in a model of a leech heart interneuron. Phys. Rev. E 2011, 84, 041910. [Google Scholar] [CrossRef] [Green Version]
- Pontryagin, L.S.; Rodygin, L.V. Periodic solution of a system of ordinary differential equations with a small parameter in the terms containing derivatives. Sov. Math. Dokl. 1960, 1, 611–614. [Google Scholar]
- Zhan, F.; Su, J.; Liu, S. Canards dynamics to explore the rhythm transition under electromagnetic induction. Chaos Solitons Fractals 2023, 169, 113304. [Google Scholar] [CrossRef]
- Yu, H.; Chen, Y. Some advances in dimensionality reduction methods for highter dimensional nonlinear dynamic systems. Adv. Mech. 2009, 39, 154–164. (In Chinese) [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhan, F.; Zhang, Y.; Song, J.; Liu, S. Canard Mechanism and Rhythm Dynamics of Neuron Models. Mathematics 2023, 11, 2874. https://doi.org/10.3390/math11132874
Zhan F, Zhang Y, Song J, Liu S. Canard Mechanism and Rhythm Dynamics of Neuron Models. Mathematics. 2023; 11(13):2874. https://doi.org/10.3390/math11132874
Chicago/Turabian StyleZhan, Feibiao, Yingteng Zhang, Jian Song, and Shenquan Liu. 2023. "Canard Mechanism and Rhythm Dynamics of Neuron Models" Mathematics 11, no. 13: 2874. https://doi.org/10.3390/math11132874
APA StyleZhan, F., Zhang, Y., Song, J., & Liu, S. (2023). Canard Mechanism and Rhythm Dynamics of Neuron Models. Mathematics, 11(13), 2874. https://doi.org/10.3390/math11132874