Next Article in Journal
On Consequences of Carreau Nanofluid Model with Dufour–Soret Effects and Activation Energy Subject to New Mass Flux Condition: A Numerical Study
Previous Article in Journal
Exploration of New Solitons for the Fractional Perturbed Radhakrishnan–Kundu–Lakshmanan Model
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Bifurcation of Limit Cycles and Center in 3D Cubic Systems with Z3-Equivariant Symmetry

1
School of Computer Engineering, Guangzhou City University of Technology, Guangzhou 510800, China
2
College of Mathematics and Statistics, Guangxi Normal University, Guilin 541006, China
3
School of Education, Guangxi Vocational Normal University, Nanning 530007, China
*
Author to whom correspondence should be addressed.
Mathematics 2023, 11(11), 2563; https://doi.org/10.3390/math11112563
Submission received: 21 April 2023 / Revised: 26 May 2023 / Accepted: 30 May 2023 / Published: 3 June 2023
(This article belongs to the Section Dynamical Systems)

Abstract

:
This paper focuses on investigating the bifurcation of limit cycles and centers within a specific class of three-dimensional cubic systems possessing Z 3 -equivariant symmetry. By calculating the singular point values of the systems, we obtain a necessary condition for a singular point to be a center. Subsequently, the Darboux integral method is employed to demonstrate that this condition is also sufficient. Additionally, we demonstrate that the system can bifurcate 15 small amplitude limit cycles with a distribution pattern of 5 5 5 originating from the singular points after proper perturbation. This finding represents a novel contribution to the understanding of the number of limit cycles present in three-dimensional cubic systems with Z 3 -equivariant symmetry.

1. Introduction

The study of limit cycles in differential systems comes from practice, and many applied disciplines, such as physics, mechanics, biology, economics, ecology, electronics, and finance, may exhibit limited cycle phenomena. Limit cycles play a very important role in the study of nonlinear system dynamics. The limit cycle phenomenon was first proposed by H. Poincaré [1], and further development was promoted by the famous Hilbert’s 16th problem [2]. The latter part of the sixteenth problem is as follows: what is the maximum number of limit cycles (Hilbert number: H ( n ) ) that can be generated by a planar differential system of degree n? For n = 2 , the best result was obtained by Shi [3] and Chen [4] more than forty years ago, H ( 2 ) 4 . For n = 3 , scholars have conducted a lot of research work, and the best result for cubic polynomial systems is H ( 3 ) 13 [5,6]. For more information of n = 4 , 5 , 6 , , see [7,8,9].
The limit cycles of a differential autonomous system are always perturbed by singular points, but it is difficult to obtain a higher number of limit cycles in terms of a single singular point. Considering this situation, it is a good direction to study from multiple singular points. In the case of two singular points, Du, Liu and Huang [10] studied a class of Kolmogorov system that is symmetrical about the line y = x , and showed that under certain conditions, each singularity can bifurcate into five limit cycles so there are ten limit cycles in total. Du, Huang and Zhang [11] proved that a class of systems symmetric with regard to the origin can generate 12 limit cycles of 6 6 distribution by Hopf bifurcation. For three singular points, Yu and Han [12] used the perturbation technique to calculate the focus values and proved that a class of the Z 2 -equivariant system has at most 12 limit cycles. For four singular points, Wang, Liu and Du [13] considered a class of Z 3 -equivariant systems and obtained the conclusion that H ( 4 ) 16 . For more singular points, Yao and Yu [14] applied the normal form and the technique of solving coupled multivariate polynomial equations to prove that the maximal number of small limit cycles is 25 in Z 5 -equivariant planar vector fields, so H ( 5 ) 25 . Li, Chan and Chung [15] gave a concrete numerical example of at least 24 limit cycles for a perturbed Hamiltonian system with Z 6 symmetry, and conjectured that H ( 2 k + 1 ) ( 2 k + 1 ) 2 1 for the perturbed Hamiltonian systems. Li and Zhang [16] used the detection function method to show that H ( 7 ) 49 by considering a Z 8 -equivariant vector field. Through analyzing a Z 10 symmetric system, Wang and Yu [17] obtained the result H ( 9 ) 80 . Recently, the fractional-order dynamic model has been widely studied. It is considered to be more valuable than the integer-order dynamic model to describe many objective natural phenomena in the real world because of its good memory characteristics and genetic function in many materials and evolutionary processes. Huang et al. [18,19] and Xu et al. [20,21,22] focused on the understanding of the bifurcation phenomena and dynamical behavior in fractional-order neural networks with different delays. They provide insights into the impact of fractional order and multiple delays on the stability, equilibrium points, and bifurcation patterns in neural network dynamics.
Surprisingly, unlike the planar systems, where the number of limit cycles is finite [23], a simple three-dimensional system may have an infinite number of small amplitude limit cycles [24]. At present Huang, Gu and Wang [25] introduced some results on the bifurcation of limit cycles for three-dimensional smooth systems, such as Lotka–Volterra systems, Chen systems, Lorenz systems, Lü systems, and three-dimensional piecewise smooth systems. Sanchez and Torregrosa [26] studied several classes of three-dimensional polynomial differential systems by using the parallel computing method, and determined that there are at most 11, 31, 54, and 92 limit cycles at the origin for three-dimensional quadratic, cubic, quartic, and quintic systems, respectively. For multiple singular points, Gu et al. [27] proved the existence of seven limit cycles in a class of three-dimensional cubic Kolmogorov systems. Lu et al. [28] proved the existence of eight limit cycles in a class of Lorenz systems, which are Z 2 symmetric and quadratic three-dimensional systems. Guo, Yu and Chen [29] applied the theory of center manifold and normal forms to prove the existence of 12 limit cycles with 4 4 4 distribution in three-dimensional vector fields with Z 3 symmetry. Then, they analyzed a 3 D quadratic system with two symmetric singular points by using the same approach in [30] and showed that there are twelve limit cycles with 6 6 distributed around the singular points.
Based on the above research results, numerous issues remain to be investigated in the dynamics of three-dimensional differential systems. In this study, we analyze the limit cycle bifurcation of a class of Z 3 -equivariant symmetric cubic systems by using symmetry to find the focal points with the same topological structure, and the form of the systems is as follows:
d x d t = A 010 y + ( A 010 + A 030 1 3 ) x y + A 020 y 2 ( 2 A 010 + A 030 + 2 3 ) x 2 y + 2 A 020 x y 2 + x u 2 + A 030 y 3 , d y d t = x B 030 y + x 2 + y u + B 030 x 2 y + 2 x y 2 + B 030 y 3 , d u d t = x u + y 2 u .
Regarding the investigations into Hopf bifurcation of ordinary differential models, several classical methods are available. These include the Poincaré normal form, Liapunov–Schmidt method [31] and the dimension reduction method of directly calculating the center manifold, see, for example, [32]. Additionally, various other research approaches have been proposed, such as the averaging theory [33,34], the technique of the inverse Jacobi multiplier [35,36], the simple normal form method [37] and the formal first integral method [38]. Recently, the authors of [39] presented a theorem on the bound of the cyclicity in terms of the Bautin ideal to determine the maximum number of limit cycles within the center manifold generated from a center.
In our research, we employ the linear and straightforward algorithm proposed in a previous work [40] to compute the quantities of singular points without the need for dimensionality reduction. This algorithm is linear in nature and avoids complex integration operations. As a result, the calculations can be easily performed using symbolic computation systems, such as Mathematica. Furthermore, the weight polynomial and characteristic curve methods introduced in [41] are utilized to search for invariant algebraic surfaces, namely, all the Darboux polynomials under certain conditions. Then, the center conditions are derived, and the maximum number of limit cycles via a Hopf bifurcation is determined. Finally, we demonstrate that the system (1) can bifurcate 15 small amplitude limit cycles with a 5 5 5 distribution from the singular points after proper perturbation. The result is a new lower bound on the number of limit cycles in three-dimensional cubic systems with Z 3 -equivariant symmetry.
This paper is structured as follows. Section 2 introduces fundamental theories and methods of differential Hopf bifurcation systems, which are essential for a comprehensive discussion of system (1). In Section 3, we present a recursive formula for singular point values, which is linear and can simplify complex integral operations. As a result, we can conveniently use computer symbolic operation systems, such as Mathematica or Maple, to calculate the singular point values of system (1). In Section 4, we establish a necessary condition for the singular point to be a center, and then we use the Darboux integral method to demonstrate that this condition is also sufficient. Finally, in Section 5, we show that system (1) can bifurcate 15 small amplitude limit cycles with a 5 5 5 distribution from the singular points after proper perturbation.

2. Preliminary Theory and Method

For the Z q -equivariant system, we only present the results we need in the next section in this section. For more details, the reader can refer to [42,43]
Lemma 1 
(see [43]). If a system is a Z q -equivariant system and it has a real singular point except for the origin, then the system must have q real singular points, which are q-symmetric about the origin.
To discuss the limit cycle of a system, it is usually necessary to calculate all the focal values at the singular point. The consequent difficulty arises that the calculation of all the focus values of the singular point of the system is too complicated for us to calculate all the focus values. However, according to Hilbert’s finite basis principle, there must be a finite number of focus values that can express all the focus values of the singular point of the system (the finite number of focus values in front is called the focus basis). Wang [44] proved that the first non-zero focal values v 2 m + 1 at the origin of system (2) are algebraically equivalent to the first non-zero singular values μ m at the origin of its complex system (4) (and the Lyapunov constant V 2 m at the origin of the center manifold of system (2)). Therefore, the study of the focal values of the differential system can be simplified to the investigation of its singular point values. The focus basis issue, namely the highest-order fine focus problem, can be effectively solved in this process, and then the maximum number of limit cycle branches is also analyzed. In this paper, we apply the formal series method proposed by Wang [40] to study system (1).
Next, we show (for details see [40]) some preparations for the calculation of the singular point values of the system. Consider the following three-dimensional system:
d x d t = y + k + j + l = 2 A k j l x k y j u l = X ( x , y , u ) , d y d t = x + k + j + l = 2 B k j l x k y j u l = Y ( x , y , u ) , d u d t = d u + k + j + l = 2 d k j l x k y j u l = U ( x , y , u ) ,
where x , y , u , t , d , A k j l , B k j l , d k j l R ( k , j , l N ) and d > 0 .
The linear matrix of system (2) has a pair of purely imaginary eigenvalues ± i and a negative eigenvalue d at the origin of the singular point. Reviewing the related concepts and results, it is obvious that Hopf bifurcation occurs in system (2). The qualitative analysis of the high-dimensional systems is generally utilized to reduce their dimensions to plane systems by using the center manifold theorem, and then the limit cycles, centers, and isochronous centers are studied by means of the plane bifurcation theory. For system (2), there exists an approximation to the center manifold u = u ( x , y ) , which can be represented as the polynomial series in x and y formally as follows:
u = u ( x , y ) = x 2 + y 2 + h . o . t . ,
where h . o . t . denotes a higher-order term with an order greater than or equal to 3.
By transformation
x = z + w 2 , y = ( w z ) i 2 , u = u , t = T i , i = 1 ,
the system (2) can be transformed into the following complex system:
d z d T = z + k + j + l = 2 a k j l z k w j u l = Z ( z , w , u ) , d w d T = w k + j + l = 2 b k j l w k z j u l = W ( z , w , u ) , d u d T = i d u + k + j + l = 2 d ˜ k j l z k w j u l = U ˜ ( z , w , u ) ,
in which z , w , T , a k j l , b k j l , d ˜ k j l C ( k , j , l N ) . It is worth noting that the coefficients a k j l and b k j l of system (4) satisfy a conjugate relationship, namely, b k j l = a k j l ¯ , k 0 , j 0 , l 0 , k + j + l 2 . System (2) and system (4) are referred to as being concomitant. To make it easier to write d ˜ k j l and U ˜ , we still use d k j l , U.
For system (4), we have the following preliminary results:
Lemma 2 
(see [40]). For system (4), when taking c 110 = 1 , c 101 = c 011 = c 200 = c 020 = 0 , c k k 0 = 0 , k = 2 , 3 , , we can derive successively and uniquely the following series:
F ( z , w , u ) = z w + α + β + γ = 3 c α β γ z α w β u γ ,
such that
d F d T = F z Z F w W + F u U = m = 1 μ m ( z w ) m + 1 .
The expression μ m given in (5) is called the m-th singular point value at the origin of system (4), and if α β or α = β , γ 0 , c α β γ is determined by the following recursive formula:
c α β γ = 1 β α i d γ k + j + l = 3 α + β + γ + 2 ( α k + 1 ) a k , j 1 , l ( β j + 1 ) b j , k 1 , l + ( γ l ) d k 1 , j 1 , l + 1 c α k + 1 , β j + 1 , γ l ,
and for any positive integer m, μ m is determined by the following recursive formula:
μ m = k + j + l = 3 2 ( m + 1 ) ( m k + 2 ) a k , j 1 , l ( m j + 2 ) b j , k 1 , l l d k 1 , j 1 , l + 1 c m k + 2 , m j + 2 , l ,
and if α < 0 or β < 0 or γ < 0 or γ = 0 , α = β , we put c α β γ = 0 .
A singular point of a system becomes a center if and only if all its focal values are zero. So we have the following results.
Definition 1 
(see [45]). For system (2), if v 1 1 , then the origin is called the rough focus (strong focus); if v 1 = 1 , and v 2 = v 3 = = v 2 k = 0 , v 2 k + 1 0 , then the origin is called the fine focus (weak focus) of order k, and the quantity of v 2 k + 1 is called the k-th focal value at the origin ( k = 1 , 2 , ) ; if v 1 = 1 , and for any positive integer k , v 2 k + 1 = 0 , then the origin is called a center.
Lemma 3 
(see [44]). Let μ k be the k-th singular point value at the origin of system (4), and v 2 k + 1 be the k-th focal value at the origin of system (2) ( k = 1 , 2 , ) . If μ 1 = μ 2 = = μ k 1 = 0 , then
v 2 k + 1 = i π μ k .
The maximum number of limit cycles bifurcated from the fine focus of the system is closely related to the highest order of the fine focus. So solving the highest-order fine focus question of the system is equivalent to analyzing the issue of the maximum number of limit cycle bifurcations as follows:
Lemma 4 
(see [46]). If the origin of system (2) is a fine focus of order k, then the origin of system (2) can bifurcate at most k small-amplitude limit cycles under a suitable perturbation.
Lemma 5 
(see [45]). Suppose that the focal values v i of system (2) associated with the origin are determined by k independent parameters λ 1 , λ 2 , , λ k , i.e., v i = v i ( λ 1 , λ 2 , , λ k ) , i = 0 , 1 , , k . If there exists a point λ * = ( λ 1 * , λ 2 * , , λ k * ) such that v 3 ( λ * ) = v 5 ( λ * ) = = v 2 k 1 ( λ * ) = 0 , v 2 k + 1 ( λ * ) 0 , and
det ( v 3 , v 5 , , v 2 k 1 ) ( λ 1 , λ 2 , , λ k ) λ * 0 ,
then system (2) has exactly k small-amplitude limit cycles bifurcating from the origin under a suitable perturbation on λ * .

3. Singular Point Values

For the Z q -equivariant symmetric system, it can be seen from Lemma 1 that its singular points appear as multiples of q. Moreover, these q singular points have the same topological structure, so their limit cycles are also generated in multiples of q, and the properties around the corresponding limit cycles are similar. Therefore, when we study the center-focus problem and the limit cycle bifurcation of the Z q -equivariant symmetric system, we only need to select one of the q singular points with the same topological structure for research. We can easily determine that the points ( 1 , 0 , 0 ) , ( 1 2 , 3 2 , 0 ) and ( 1 2 , 3 2 , 0 ) are three singular points of the system (1), which are symmetric about the Z-axis. So we only need to choose one of them, and at the same time for the convenience of calculation, we only calculate the singular point values of the singular point ( 1 , 0 , 0 ) .
To calculate the values of a single non-origin singular point, the following steps are typically involved: First, the singular point is moved to the origin by a transformation. Second, the real system is changed into a complex system by complex transformation. Third, calculate the singular point value in the complex system.
Firstly, let
x = x 1 + 1 , y = y 1 , u = u 1 ,
and system (1) can be rewritten in the following form:
d x 1 d t = y 1 + u 1 2 + u 1 2 x 1 5 x 1 y 1 3 3 A 010 x 1 y 1 A 030 x 1 y 1 2 x 1 2 y 1 3 2 A 010 x 1 2 y 1 A 030 x 1 2 y 1 + 3 A 020 y 1 2 + 2 A 020 x 1 y 1 2 + A 030 y 1 3 , d y 1 d t = x 1 + x 1 2 + u 1 y 1 + 2 B 030 x 1 y 1 + B 030 x 1 2 y 1 + 2 y 1 2 + 2 x 1 y 1 2 + B 030 y 1 3 , d u 1 d t = u 1 u 1 x 1 + u 1 y 1 2 .
Then, let
x = z + w 2 , y = ( w z ) i 2 , u = u , t = T i , i = 1 ,
and system (7) can be rewritten in the following form:
d z d T = z i u 2 + i u w 2 i u 2 w 2 2 w 2 3 3 A 010 w 2 4 + 3 i A 020 w 2 4 A 030 w 2 4 + i B 030 w 2 2 w 3 3 A 010 w 3 4 + i A 020 w 3 4 A 030 w 3 4 i u z 2 i u 2 z 2 + 3 w z 2 3 i A 020 w z 2 + w 2 z 6 A 010 w 2 z 4 i A 020 w 2 z 4 + A 030 w 2 z 4 + i B 030 w 2 z 2 + z 2 6 + 3 A 010 z 2 4 + 3 i A 020 z 2 4 + A 030 z 2 4 i B 030 z 2 2 + w z 2 3 + A 010 w z 2 4 i A 020 w z 2 4 A 030 w z 2 4 i B 030 w z 2 2 z 3 6 + A 010 z 3 4 + i A 020 z 3 4 + A 030 z 3 4 ,
d w d T = w ( i u 2 i u w 2 + i u 2 w 2 2 w 2 3 3 A 010 w 2 4 3 i A 020 w 2 4 A 030 w 2 4 i B 030 w 2 2 w 3 3 A 010 w 3 4 i A 020 w 3 4 A 030 w 3 4 + i u z 2 + i u 2 z 2 + 3 w z 2 + 3 i A 020 w z 2 + w 2 z 6 A 010 w 2 z 4 + i A 020 w 2 z 4 + A 030 w 2 z 4 i B 030 w 2 z 2 + z 2 6 + 3 A 010 z 2 4 3 i A 020 z 2 4 + A 030 z 2 4 + i B 030 z 2 2 + w z 2 3 + A 010 w z 2 4 + i A 020 w z 2 4 A 030 w z 2 4 + i B 030 w z 2 2 z 3 6 + A 010 z 3 4 i A 020 z 3 4 + A 030 z 3 4 ) ,
d u d T = i u + i u w 2 + i u w 2 4 + i u z 2 i u w z 2 + i u z 2 4 .
Then, by using Lemma 2, we can calculate the singular point values of the singular point ( 0 , 0 , 0 ) of the complex system (8). With the aid of ycomputer algebra software Mathematica 12, the recurrence formula can be obtained as follows:
Lemma 6. 
For system (8), the singular point values μ m ( m = 1 , 2 , ) at the origin are determined by the following recursive formulas:
μ m = 1 12 { ( 4 + 3 A 010 + 3 i A 020 + 3 A 030 ) ( 2 + m ) c 2 + m , 2 + m , 0 + 2 ( 3 i A 020 3 A 030 + 3 i B 030 2 m + 3 A 010 m + 3 i B 030 m ) c 1 + m , 1 + m , 0 + ( 8 + 9 A 010 + 9 i A 020 + 3 A 030 + 6 i B 030 ) ( 2 + m ) c 1 + m , 2 + m , 0 + [ 18 + ( 16 + 9 A 010 + 3 A 030 6 i B 030 ) m 9 i A 020 ( 2 + m ) ] c m , 1 + m , 0 + 2 ( 3 i A 020 + 3 A 030 + 3 i B 030 + 2 m 3 A 010 m + 3 i B 030 m ) c 1 + m , 1 + m , 0 [ 18 + ( 16 + 9 A 010 + 3 A 030 + 6 i B 030 ) m + 9 i A 020 ( 2 + m ) ] c 1 + m , m , 0 ( 4 + 3 A 010 3 i A 020 + 3 A 030 ) ( 2 + m ) c 2 + m , 2 + m , 0 ( 8 + 9 A 010 9 i A 020 + 3 A 030 6 i B 030 ) ( 2 + m ) c 2 + m , 1 + m , 0 6 i ( A 020 + 2 B 030 ) m c m , m , 0 } ,
where c k , k , 0 = 0 , k = 2 , 3 , , and if k < 0 or j < 0 or l < 0 , we let c k , j , l = 0 , else
c α β γ = 1 12 ( α + β i γ ) { ( 4 + 3 A 010 + 3 i A 020 + 3 A 030 ) ( 1 + β ) c 3 + α , 1 + β , γ + [ 4 6 A 030 2 α + 3 A 030 α + 3 i A 020 ( 2 + α β ) 2 β 3 A 030 β + 6 i B 030 β + 3 i γ + 3 A 010 ( 2 + α + β ) ] c 2 + α , β , γ + ( 8 + 9 A 010 + 9 i A 020 + 3 A 030 + 6 i B 030 ) × ( 1 + β ) c 2 + α , 1 + β , γ + [ 4 α + 3 A 010 α 3 A 030 α 4 β 3 A 010 β + 3 A 030 β 3 i A 020 ( 2 + α + β ) 6 i B 030 ( 2 + α + β ) 6 i γ ] c 1 + α , 1 + β , γ + [ ( 2 + 9 i A 020 + 3 A 030 6 i B 030 ) ( 1 + α ) 18 i ( i + A 020 ) β + 6 i γ ] c 1 + α , β , γ 6 i ( 1 + β ) c 1 + α , 1 + β , 2 + γ + 6 i ( 1 + β ) c 1 + α , 1 + β , 1 + γ + [ 4 + 6 A 030 + 2 α + 3 A 030 α + 6 i B 030 α 3 i A 020 ( 2 + α β ) + 2 β 3 A 030 β 3 A 010 ( 2 + α + β ) + 3 i γ ] c α , 2 + β , γ + [ 18 ( 1 i A 020 ) α ( 2 + 9 A 010 9 i A 020 + 3 A 030 + 6 i B 030 ) ( 1 + β ) + 6 i γ ] c α , 1 + β , γ 6 i ( α + β ) c α , β , 2 + γ 6 i ( α + β ) c α , β , 1 + γ 12 i ( 1 + β ) c α , 1 + β , 2 + γ ( 4 + 3 A 010 3 i A 020 + 3 A 030 ) ( 1 + α ) c 1 + α , 3 + β , γ ( 8 + 9 A 010 9 i A 020 + 3 A 030 6 i B 030 ) ( 1 + α ) c 1 + α , 2 + β , γ 6 i ( 1 + α ) c 1 + α , 1 + β , 2 + γ + 6 i ( 1 + α ) c 1 + α , 1 + β , 1 + γ 12 i ( 1 + α ) c 1 + α , β , 2 + γ } .
Next, using the computer algebra system Mathematica, the recursive formula is programmed, and the singular point values of system (8) corresponding to the Hopf critical point located at the origin are calculated, and the following theorem is obtained.
Theorem 1. 
For the flow on the center manifold of system (8), the first five singular point values at the origin are given as follows:
μ 1 = 1 4 i ( 9 A 020 + 9 A 010 A 020 + 3 A 020 A 030 + 2 B 030 ) .
If B 030 = 3 2 ( 3 A 020 + 3 A 010 A 020 + A 020 A 030 ) , then μ 2 = 1 144 i A 020 F 1 , where
F 1 = 258 + 1503 A 010 1539 A 010 2 486 A 010 3 + 6318 A 020 2 2673 A 010 A 020 2 12393 A 010 2 A 020 2 + 8748 A 010 3 A 020 2 + 1117 A 030 1890 A 010 A 030 162 A 010 2 A 030 891 A 020 2 A 030 8262 A 010 A 020 2 A 030 + 8748 A 010 2 A 020 2 A 030 459 A 030 2 + 54 A 010 A 030 2 1377 A 020 2 A 030 2 + 2916 A 010 A 020 2 A 030 2 + 18 A 030 3 + 324 A 020 2 A 030 3 .
Case 1 : if A 020 = 0 , then B 030 = 0 and
μ 2 = μ 3 = μ 4 = μ 5 = 0 .
Case 2 : if A 020 0 , then
μ 3 = 1 124416 i A 020 H 3 , μ 4 = = 1 134369280 i A 020 H 4 , μ 5 = 1 348285173760 i A 020 H 5 ,
where
H 3 = 6246384 + 27244530 A 010 68699907 A 010 2 + 32937192 A 010 3 + 4279959 A 010 4 2401326 A 010 5 + 157002786 A 020 2 132687234 A 010 A 020 2 429523884 A 010 2 A 020 2 + 648917892 A 010 3 A 020 2 270719982 A 010 4 A 020 2 + 25863462 A 010 5 A 020 2 + 505616904 A 020 4 811136430 A 010 A 020 4 872685171 A 010 2 A 020 4 + 2549853918 A 010 3 A 020 4 1760664033 A 010 4 A 020 4 + 22767910 A 030 + 389014812 A 010 5 A 020 4 82142550 A 010 A 030 + 66573900 A 010 2 A 030 6467688 A 010 3 A 030 2401326 A 010 4 A 030 15339942 A 020 2 A 030 389539692 A 010 A 020 2 A 030 + 789431184 A 010 2 A 020 2 A 030 444022236 A 010 3 A 020 2 A 030 + 60348078 A 010 4 A 020 2 A 030 270378810 A 020 4 A 030 581790114 A 010 A 020 4 A 030 + 2549853918 A 010 2 A 020 4 A 030 2347552044 A 010 3 A 020 4 A 030 + 648358020 A 010 4 A 020 4 A 030 20509215 A 030 2 + 34447464 A 010 A 030 2 9670914 A 010 2 A 030 2 533628 A 010 3 A 030 2 82121688 A 020 2 A 030 2 + 309981492 A 010 A 020 2 A 030 2 263542248 A 010 2 A 020 2 A 030 2 + 51726924 A 010 3 A 020 2 A 030 2 96965019 A 020 4 A 030 2 + 849951306 A 010 A 020 4 A 030 2 1173776022 A 010 2 A 020 4 A 030 2 + 432238680 A 010 3 A 020 4 A 030 2 + 5305284 A 030 3 3657312 A 010 A 030 3 + 177876 A 010 2 A 030 3 + 39646584 A 020 2 A 030 3 67794084 A 010 A 020 2 A 030 3 + 21073932 A 010 2 A 020 2 A 030 3 + 94439034 A 020 4 A 030 3 260839116 A 010 A 020 4 A 030 3 + 144079560 A 010 2 A 020 4 A 030 3 436941 A 030 4 + 88938 A 010 A 030 4 6418602 A 020 2 A 030 4 + 4150926 A 010 A 020 2 A 030 4 21736593 A 020 4 A 030 4 + 24013260 A 010 A 020 4 A 030 4 + 9882 A 030 5 + 319302 A 020 2 A 030 5 + 1600884 A 020 4 A 030 5 ,
H 4 and H 5 are given in Appendix A. For every μ k that was calculated, we already imposed that μ 1 = μ 2 = = μ k 1 = 0 , k = 2 , 3 , , 5 .
Because μ 3 , μ 4 and μ 5 are so complicated, we can simplify them appropriately. According to Theorem (1), the simplification of μ 3 , μ 4 , and μ 5 is equivalent to the simplification of H 3 , H 4 and H 5 . To simplify the calculation, we can first consider whether u 3 can be simplified. Obviously, with the program command F a c t o r , P o l y n o m i a l R e d u c e , we can easily find the greatest common factor ( G 3 ) of F 1 and H 3 . Then μ 3 = 1 124416 i A 020 H 3 can be reduced to μ 3 = 1 331776 i A 020 F 2 by factorization. The same method is adopted for the simplification of μ 4 and μ 5 , so we can obtain the following theorem.
Theorem 2. 
Through factorization and polynomial reduction, the first five order singular point values of system (8) can be reduced to the following form:
μ 1 = 1 4 i ( 9 A 020 + 9 A 010 A 020 + 3 A 020 A 030 + 2 B 030 ) .
If B 030 = 3 2 ( 3 A 020 + 3 A 010 A 020 + A 020 A 030 ) , then μ 2 = 1 144 i A 020 F 1 .
Case 1 : if A 020 = 0 , then B 030 = 0 and
μ 2 = μ 3 = μ 4 = μ 5 = 0 .
Case 2 : if A 020 0 , then
μ 3 = 1 331776 i A 020 F 2 , μ 4 = 1 1911029760 i A 020 F 3 , μ 5 = i A 020 F 4 ,
where
F 2 = 4830390 19659213 A 010 + 23735349 A 010 2 + 6510942 A 010 3 3726648 A 010 4 629856 A 010 5 53937738 A 020 2 + 184334211 A 010 A 020 2 138172473 A 010 2 A 020 2 + 491287680 A 020 4 944784000 A 010 A 020 4 + 453496320 A 010 2 A 020 4 14484727 A 030 + 37293750 A 010 A 030 6818742 A 010 2 A 030 6928416 A 010 3 A 030 1049760 A 010 4 A 030 + 171803025 A 020 2 A 030 293577534 A 010 A 020 2 A 030 + 93177864 A 010 2 A 020 2 A 030 314928000 A 020 4 A 030 + 302330880 A 010 A 020 4 A 030 + 12608709 A 030 2 10066734 A 010 A 030 2 3845232 A 010 2 A 030 2 419904 A 010 3 A 030 2 82506681 A 020 2 A 030 2 + 62118576 A 010 A 020 2 A 030 2 + 50388480 A 020 4 A 030 2 2356794 A 030 3 806112 A 010 A 030 3 + 46656 A 010 2 A 030 3 + 10353096 A 020 2 A 030 3 52056 A 030 4 + 54432 A 010 A 030 4 + 7776 A 030 5 ,
F 3 and F 4 are given in Appendix A. For every μ k that was calculated, we already imposed that μ 1 = μ 2 = = μ k 1 = 0 , k = 2 , 3 , , 5 .

4. Center Condition

In this section, we obtain the necessary and sufficient condition for the singular point ( 1 , 0 , 0 ) of system (1) to be a center by using the singular point values and the Darboux integral method.
From Theorem 2, we obtain the following result.
Theorem 3. 
For system (7), the first 5 singular point values at the origin vanish if and only if B 030 = 3 2 ( 3 A 020 + 3 A 010 A 020 + A 020 A 030 ) and A 020 = 0 .
Proof. 
First, we prove its sufficiency, and substitute B 030 = 3 2 ( 3 A 020 + 3 A 010 A 020 + A 020 A 030 ) , A 020 = 0 into the expressions of the first five singular point values in Theorem 2. It is clear that μ 1 = μ 2 = μ 3 = μ 4 = μ 5 = 0 is established. The sufficiency of Theorem 3 is proved. Next, we prove that the condition in Theorem 3 is also necessary. Taking the first singular point value μ 1 = 0 , then we obtain B 030 = 3 2 ( 3 A 020 + 3 A 010 A 020 + A 020 A 030 ) . Next, taking the second singular point value μ 2 = 0 , then we obtain A 020 = 0 or A 020 0 , F 1 = 0 , so we need to have a case-by-case discussion. Case A : If A 020 = 0 , that is B 030 = 0 , then under this condition, Case 1 of theorem 2 holds, so this situation discussion is completed. Case B : If A 020 0 , then Case 2 of Theorem 2 holds. Next, we need to determine whether μ 2 = μ 3 = μ 4 = μ 5 = 0 is true, that is, to discuss whether or not the polynomials F 1 , F 2 , F 3 and F 4 have common zeros. For this purpose, we apply the command “GroebnerBasis” in Mathematica to calculate the Gröbner basis of the < F 1 , F 2 , F 3 , F 4 > about the independent variables A 010 , A 020 and A 030 . We obtain
GroebnerBasis [ { F 1 , F 2 , F 3 , F 4 } , { A 010 , A 020 , A 030 } ] = { 1 } .
This indicates that the polynomials F 1 , F 2 , F 3 and F 4 have no common zeros. Therefore, in Case 2, the first five singular values of system (8) (i.e., (7)) cannot be zero at the same time. In conclusion, the proof of Theorem 3 is complete.  □
It is necessary that the system’s first finite focal values are equal to zero for a singular point to become a center. In order to obtain the necessary and sufficient center condition, its sufficiency needs to be proved. The common methods of proof include using the symmetry principle, finding the first integral means, determining the integral factor method, etc. It is not difficult to see that Theorem 3 gives the necessary condition for the singular point ( 0 , 0 , 0 ) to be a center of system (7).
Theorem 4. 
For system (7), if and only if B 030 = 3 2 ( 3 A 020 + 3 A 010 A 020 + A 020 A 030 ) and A 020 = 0 , the surface Γ : u 1 = 0 is an invariant algebraic surface, which defines a global center manifold, and on this center manifold, the origin of system (7) is a center.
Proof. 
The necessity of Theorem 4 is obvious. Now we use the Darboux integrable theory [30,47] to demonstrate the sufficiency of this condition.
When condition ( B 030 = 3 2 ( 3 A 020 + 3 A 010 A 020 + A 020 A 030 ) and A 020 = 0 ) in Theorem 4 holds, system (7) can be rewritten in the form
d x 1 d t = y 1 + u 1 2 + u 1 2 x 1 5 x 1 y 1 3 3 A 010 x 1 y 1 A 030 x 1 y 1 2 x 1 2 y 1 3 2 A 010 x 1 2 y 1 A 030 x 1 2 y 1 + A 030 y 1 3 , d y 1 d t = x 1 + x 1 2 + u 1 y 1 + 2 y 1 2 + 2 x 1 y 1 2 , d u 1 d t = u 1 u 1 x 1 + u 1 y 1 2 .
It is known from [47] that for the following system
d x d t = P ( x , y , u ) , d y d t = Q ( x , y , u ) , d u d t = R ( x , y , u ) ,
where the degree of P ( x , y , u ) , Q ( x , y , u ) , R ( x , y , u ) does not exceed n. The polynomial equation F ( x , y , u ) = 0 is an invariant algebraic surface of system (10) if and only if there exists a polynomial K ( x , y , u ) , which satisfies the following condition:
d F d t ( 9 ) = F x P + F y Q + F u R = K F ,
where the polynomial F is called the Dardoux polynomial of system (10). F ( x , y , u ) is generally defined as
F ( x , y , u ) = i = 1 m F i ( x , y , u ) ,
where m is an integer not less than 1, F i ( x , y , u ) is a homogeneous polynomial of degree i, and F i ( x , y , u ) 0 . The polynomial K is the cofactor of F ( x , y , u ) = 0 , and its degree does not exceed n 1 .
For system (9), in order to prove the existence of the Dardoux polynomial F ( x 1 , y 1 , u 1 ) by searching from m = 1 , for m = 1 , let
F ( x 1 , y 1 , u 1 ) = c 1 x 1 + c 2 y 1 + c 3 u 1 .
Since system (9) is of degree 3, the corresponding cofactor K ( x 1 , y 1 , u 1 ) has a degree of at most two, and we assume that
K ( x 1 , y 1 , u 1 ) = h 0 + h 1 x 1 + h 2 y 1 + h 3 u 1 + h 4 x 1 2 + h 5 y 1 2 + h 6 u 1 2 + h 7 x 1 y 1 + h 8 x 1 u 1 + h 9 y 1 u 1 .
After we substitute (13) and (12) into (11) and obtain an algebraic equation, then comparing the coefficients of the same powers of the equation, we can obtain the following algebraic equations:
c 3 h 0 = c 3 , c 1 = c 3 h 3 , 0 = c 3 h 6 , c 1 = c 2 h 0 , c 3 h 2 + c 2 h 3 = c 2 , c 2 h 2 = 2 c 2 , c 2 h 6 + c 3 h 9 = 0 , c 3 h 5 + c 2 h 9 = c 3 , c 2 h 5 = A 030 c 1 , c 1 h 0 = c 2 , c 3 h 1 + c 1 h 3 = c 3 , c 1 h 6 + c 3 h 8 = c 1 , c 3 h 7 + c 2 h 8 + c 1 h 9 = 0 c 2 h 1 + c 1 h 2 = 5 c 1 3 3 A 010 c 1 A 030 c 1 , c 1 h 5 + c 2 h 7 = 2 c 2 , c 1 h 1 = c 2 , c 3 h 4 + c 1 h 8 = 0 , c 2 h 4 + c 1 h 7 = 2 c 1 3 2 A 010 c 1 A 030 c 1 , c 1 h 4 = 0 .
Solving the algebraic equations (14), we can obtain c 1 = 0 , c 2 = 0 and c 3 = 1 , which results in F ( x 1 , y 1 , u 1 ) = u 1 so that the surface Γ : F ( x 1 , y 1 , u 1 ) = u 1 = 0 is truly an invariant algebraic surface of system (9).
Next, we will demonstrate that the surface Γ : F ( x 1 , y 1 , u 1 ) = u 1 = 0 is actually a global center manifold of system (9). First, we calculate the normal vector of the surface F ( x 1 , y 1 , u 1 ) = u 1 at the origin, and obtain F ( 0 , 0 , 0 ) = ( 0 , 0 , 1 ) . Since the eigenvalues of the linear matrix of system (9) at the origin are two purely imaginary eigenvalues ± i and a negative eigenvalue d , it is obvious that the tangent space of the center manifold at the origin is spanned by these vectors:
e 1 = ( 0 , 1 , 0 ) , e 2 = ( 1 , 0 , 0 ) .
In addition, one can verify that
F ( 0 , 0 , 0 ) · e 1 = 0 , F ( 0 , 0 , 0 ) · e 2 = 0 ,
which means that the surface F ( x 1 , y 1 , u 1 ) = u 1 = 0 is truly a global center manifold of system (9). Finally, it is necessary to prove that the origin of system (9) is a center on the center manifold F ( x 1 , y 1 , u 1 ) = u 1 = 0 . When u 1 = 0 , system (9) is simplified to the following planar system:
d x 1 d t = y 1 5 x 1 y 1 3 3 A 010 x 1 y 1 A 030 x 1 y 1 2 x 1 2 y 1 3 2 A 010 x 1 2 y 1 A 030 x 1 2 y 1 + A 030 y 1 3 , d y 1 d t = x 1 + x 1 2 + 2 y 1 2 + 2 x 1 y 1 2 .
It is easy to see that system (15) is a symmetric system about the X-axis, and according to the principle of symmetry, the origin of the system is a center (i.e., the singular point ( 0 , 0 , 0 ) of system (7) is a center). This completes the proof of Theorem 4.  □
Next, we use the system (9) to simulate the case of center at ( 0 , 0 , 0 ) . All trajectories starting from the initial points on the invariant surface will remain on the surface. For example, when the initial points are chosen as ( x 1 , y 1 , u 1 ) = ( 0.05 , 0.02 , 0 ) , the periodic orbits are located on the invariant surface as shown in Figure 1.
However, if the initial points are chosen from outside the invariant surface, then all trajectories first converge to the invariant surface u 1 = 0 , and once they reach the invariant surface, they become periodic orbits on the invariant surface, as shown in Figure 1, where one initial point is chosen below the invariant surface, and another initial point is chosen above the invariant surface given by ( x 1 , y 1 , u 1 ) = ( 0.1 , 0.1 , 0.01 ) , ( 0.07 , 0.03 , 0.01 ) .
According to Theorem 4, we can obtain the following.
Theorem 5. 
For system (1), if and only if B 030 = 3 2 ( 3 A 020 + 3 A 010 A 020 + A 020 A 030 ) and A 020 = 0 , the singular point ( 1 , 0 , 0 ) is a center on the center manifold.

5. Bifurcation of Limit Cycles

In this section, we will discuss the maximum number of limit cycles for system (1) branching from the singular point ( 1 , 0 , 0 ) .
From Lemma 4, we first need to consider the highest order of the fine focus of the origin of system (7), i.e., find the value of k such that v 3 = = v 2 k = 0 , but v 2 k + 1 0 holds. From Theorem 1 and Lemma 3, we obtain the first nine focal values of system (7) at the origin: v 2 m + 1 = i π μ m ( m = 1 , 2 , , 5 ) .
According to the discussion of Theorem 3 and Theorem 4, we can know that the value of k is 5, so the highest degree of the fine focus at the origin of system (7) is 5. Then, can the order of the fine focus at the origin of system (7) reach 5? That is, we discuss whether system (7) has such a set of parameter conditions that v 3 = v 5 = v 7 = v 9 = 0 , but v 11 0 . Here is what we will study next.
From the proof of Theorem 3, as long as the condition ( B 030 = 3 2 ( 3 A 020 + 3 A 010 A 020 + A 020 A 030 ) ) is met, we can simply find the values of the coefficients that make v 3 = 0 true.
So, we now only need to look for the values of the coefficients such that v 5 = v 7 = v 9 = 0 , v 11 0 . According to the proof of Theorem 3, we know that the polynomials F 1 , F 2 , F 3 and F 4 have no common root, but F 1 , F 2 and F 3 should have. Then, finding the coefficient values such that v 5 = v 7 = v 9 = 0 , v 11 0 holds is equivalent to solving the equations F 1 = 0 , F 2 = 0 , F 3 = 0 for finding the solutions of A 010 , A 020 , A 030 . With the help of Mathematica,
N S o l v e [ F 1 = = 0 , F 2 = = 0 , F 3 = = 0 , A 010 , A 020 , A 030 ] ,
we can obtain that this equation has four groups of real solutions, and take one of them as follows (only showing the first 50 digits):
A 010 = 4.5629298768000231029699982427738544924493861105275 , A 020 = 2.3050977788352747166914549291286457145886259511924 , A 030 = 10.163059853074365253530894833667331792823007039006 ,
under which
F 1 = 0 , F 2 = 0 , F 3 = 0 , F 4 = 9.975331757838829250359286685645226374401057482380239058 × 10 35 .
This result implies that there is a common solution such that F 1 = F 2 = F 3 = 0 but F 4 0 , namely v 5 = v 7 = v 9 = 0 , v 11 0 . This means that we found the values of the coefficients that make v 3 = v 5 = v 7 = v 9 = 0 , v 11 0 to be true. Substitute the value of (16) in the condition B 030 = 3 2 ( 3 A 020 + 3 A 010 A 020 + A 020 A 030 ) , obtaining
B 030 = 1.81778781297156598672791188262883929226622775425391 .
Hence, there exists a set of parameter conditions of system (7) such that v 3 = v 5 = v 7 = v 9 = 0 , but v 11 0 , that is, the origin of system (7) is a fine focus of the fifth order, i.e., the singular point ( 1 , 0 , 0 ) of system (1) is a fine focus of fifth order.
To sum up, we have the following theorem.
Theorem 6. 
For the flow on the center manifold of system (7), the highest order of the fine focus at the origin is five, and the origin becomes a fine focus of the fifth order if and only if the following conditions are satisfied:
B 030 = 3 2 ( 3 A 020 + 3 A 010 A 020 + A 020 A 030 ) , F 1 = 0 , F 2 = 0 , F 3 = 0 ,
where the polynomials F 1 , F 2 and F 3 have the same form as in Theorem 2. So for system (1), if and only if condition (18) is satisfied, the highest order of the fine focus is five, and the singular point ( 1 , 0 , 0 ) is a fine focus of fifth order.
By applying Theorem 6 and Lemma 4 to system (1), we can observe that, under suitable perturbations, the singular point ( 1 , 0 , 0 ) can generate at most five small amplitude limit cycles. Nonetheless, it remains to be determined whether the system indeed has five small amplitude limit cycles. The following theorem provides an affirmative answer to this question.
Theorem 7. 
For system (1), when the coefficients satisfy the condition of Theorem 6, the singular point ( 1 , 0 , 0 ) is the fifth-order fine focus. Moreover, system (1) can bifurcate five limit cycles at the singular point ( 1 , 0 , 0 ) by suitable perturbations of the parameters.
Proof. 
If conditions (18) in Theorem 6 hold, then the singular point ( 1 , 0 , 0 ) of system (1) is a fine focus of the fifth order. In addition, under conditions (16) and (17), the Jacobian determinant of ( v 3 , v 5 , v 7 , v 9 ) with respect to the variables ( A 010 , A 020 , A 030 , B 030 ) can be easily obtained by using the software Mathematica 12 to calculate
J = det ( v 3 , v 5 , v 7 , v 9 ) ( ( A 010 , A 020 , A 030 , B 030 ) ( 16 ) , ( 17 ) = 6.80231961693431508994805062923386820892646815334326057 × 10 7 0 .
According to Lemma 5, after system (1) is perturbed appropriately, four small-amplitude limit cycle bifurcations occur around the singular point. Meanwhile, its linear system also generates a limit cycle after the perturbation. Thus, through proper disturbance, system (1) bifurcates a total of five small-magnitude limit cycles near the singular point ( 1 , 0 , 0 ) . This finishes the proof.  □
The singular points ( 1 , 0 , 0 ) , ( 1 2 , 3 2 , 0 ) and ( 1 2 , 3 2 , 0 ) are symmetric about the Z-axis. This means that five small-amplitude limit cycles can also be generated around the other two singularities, respectively. To sum up, we have the following theorem:
Theorem 8. 
System (1) can bifurcate a total of 15 limit cycles with 5 5 5 distribution by suitable perturbations of the parameters.

6. Conclusions

In this paper, we utilize the formal series method to compute the values of singular points and investigate the bifurcation of limit cycles and centers in a specific class of three-dimensional cubic systems with Z 3 -equivariant symmetry. We not only establish a necessary and sufficient condition for the singular point of system (1) to transform into a center but also demonstrate that the system can give rise to 15 small amplitude limit cycles with a 5 5 5 distribution from the singular points following appropriate perturbation. It is worth noting that the obtained result of fifteen limit cycles represents a novel lower bound on the number of limit cycles in three-dimensional cubic systems with Z 3 -equivariant symmetry.
However, for more general three-dimensional symmetric systems, the problem remains open. Further investigations are required to explore additional dynamic properties, such as isochronous centers and periodic orbits. The challenges lie in calculating the quantities of singular points and determining the center conditions. Future research efforts may focus on enhancing computational tools to overcome these difficulties and achieve further improvements.

Author Contributions

Methodology, T.H. and J.G.; software, J.G.; validation, T.H., J.G. and Y.O.; writing—original draft preparation, T.H. and Y.O.; writing—review and editing, W.H. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by the National Natural Science Foundation of China (No. 12061016), the Youth Innovation Talent Program of Education Department of Guangdong Province (No. 2019KQ NCX211) and the Basic Ability Enhancement Program for Young and Middle-aged Teachers of Guangxi (No. 2022KY0904).

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

Appendix A

The polynomials of F 3 , F 4 , H 4 , and H 5 in Theorems 2 and 1 are listed in this appendix.
F 3 = 153095888826 + 1860305695623 A 010 1998230280921 A 010 2 638294984676 A 010 3 + 267941328516 A 010 4 + 1430360874792 A 020 2 31204484283510 A 010 A 020 2 + 33087257828550 A 010 2 A 020 2 106292949284826 A 020 4 + 348987923959347 A 010 A 020 4 259688926254681 A 010 2 A 020 4 + 1017460715581440 A 020 6 1956655222272000 A 010 A 020 6 + 939194506690560 A 010 2 A 020 6 + 1278101405341 A 030 3023729061786 A 010 A 030 + 337744106676 A 010 2 A 030 + 602736838416 A 010 3 A 030 + 154609142688 A 010 4 A 030 23127732639234 A 020 2 A 030 + 66370988256264 A 010 A 020 2 A 030 35443200166344 A 010 2 A 020 2 A 030 + 339429484206945 A 020 4 A 030 579570891113790 A 010 A 020 4 A 030 + 188232401827080 A 010 2 A 020 4 A 030 652218407424000 A 020 6 A 030 + 626129671127040 A 010 A 020 6 A 030 1081711527693 A 030 2 + 428242288068 A 010 A 030 2 + 710340936552 A 010 2 A 030 2 + 207054755712 A 010 3 A 030 2 + 23076408763458 A 020 2 A 030 2 28757005607952 A 010 A 020 2 A 030 2 + 1346567276160 A 010 2 A 020 2 A 030 2 164335971898521 A 020 4 A 030 2 + 125488267884720 A 010 A 020 4 A 030 2 + 104354945187840 A 020 6 A 030 2 60345069588 A 030 3 + 510443578224 A 010 A 030 3 + 35765478720 A 010 2 A 030 3 5647535184168 A 020 2 A 030 3 + 897711517440 A 010 A 020 2 A 030 3 + 20914711314120 A 020 4 A 030 3 + 110236757652 A 030 4 22269541248 A 010 A 030 4 + 149618586240 A 020 2 A 030 4 5637182688 A 030 5 .
F 4 = 688778863872421470946789664612506237830 + 1231005045690561766900465775385216914877 A 010 2402590916625582787532625985540652515833 A 010 2 + 348037208923537857825394686867492211230 A 010 3 + 348166336951752929540419215325732540416 A 010 4 + 9080420278166002128783335694893152295382 A 020 2 + 7069063685868319763572096614659283150927 A 010 A 020 2 19232169138759698109621470169774087046677 A 010 2 A 020 2 + 50593800254744136931455917589351640132860 A 020 4 304289436008251175989339699172119267442154 A 010 A 020 4 + 277975712305470658446181680043793793725070 A 010 2 A 020 4 1396652502664536885414402784150908339495864 A 020 6 + 2780299096539092533142828162666048893865508 A 010 A 020 6 1394768485468708965294504930932436908223084 A 010 2 A 020 6 + 665375591788459551015076454145021137387520 A 020 8 1279568445747037598105916257971194494976000 A 010 A 020 8 + 614192853958578047090839803826173357588480 A 010 2 A 020 8 + 1267893381083262236093897855241604776983 A 030 2874088873754780590366895380736580738102 A 010 A 030 + 1093424481530540189328166987697315090586 A 010 2 A 030 45842910451658752130220001317915130272 A 010 3 A 030 + 1497611654025793970349933503581563479061 A 020 2 A 030 44236857255180413391803477488573324467486 A 010 A 020 2 A 030 + 37525422044195232805000372851851751379368 A 010 2 A 020 2 A 030 426768857109444157383044020295650797850734 A 020 4 A 030 + 792832802383380658921719204789850668157620 A 010 A 020 4 A 030 290779004200677867944326749981256448310864 A 010 2 A 020 4 A 030 + 1057168539024433592028935151769659920670156 A 020 6 A 030 1165772124358428273118379839961668938168936 A 010 A 020 6 A 030 + 108726317249183364933392987986742494861920 A 010 2 A 020 6 A 030 426522815249012532701972085990398164992000 A 020 8 A 030 + 409461902639052031393893202550782238392320 A 010 A 020 8 A 030 532826728109315876243406276151011632865 A 030 2 + 267716322694560969190249582575690167346 A 010 A 030 2 32467677845289544458084830916586412448 A 010 2 A 030 2 16400420670742867794053575384224308352 A 010 3 A 030 2 25073185761136570242999017581802252168157 A 020 2 A 030 2 + 42635500339076249806850608144231530802992 A 010 A 020 2 A 030 2 6322094861456881811255878027686978166464 A 010 2 A 020 2 A 030 2 + 232722431734207427849582473168576163605662 A 020 4 A 030 2 190445728571715520105322086367166194713440 A 010 A 020 4 A 030 2 2269624107255252579443534266772302178304 A 010 2 A 020 4 A 030 2 233692368080691880067580935002259691764076 A 020 6 A 030 2 + 72630242507928026739269219783419637513280 A 010 A 020 6 A 030 2 70094884066776056163469340283827650560 A 010 2 A 020 6 A 030 2 + 68243650439842005232315533758463706398720 A 020 8 A 030 2 6996335281184329546466430231004673706 A 030 3 + 22762644533076337555225966713610290720 A 010 A 030 3 7304668247287611683449889498657735040 A 010 2 A 030 3 286758501969121671716674017415004160 A 010 3 A 030 3 + 9756450036904207698300731137028979055272 A 020 2 A 030 3 3787787182129968824314891879255361354880 A 010 A 020 2 A 030 3 166751979104970253077267154215522461184 A 010 2 A 020 2 A 030 3 31189781910193034169941260048886765420880 A 020 4 A 030 3 1482748541403348711150521726684928307200 A 010 A 020 4 A 030 3 14048344927156923788491941680727982080 A 010 2 A 020 4 A 030 3 + 12129378919400079476046074595946268630880 A 020 6 A 030 3 46729922711184037442312893522551767040 A 010 A 020 6 A 030 3 + 5274829256045156347685312239999313184 A 030 4 + 513426824599310348615672462915098752 A 010 A 030 4 427410193871358418361733032456355840 A 010 2 A 030 4 + 11342011297674662498453877203927040 A 010 3 A 030 4 560486226890763497903674617720480878784 A 020 2 A 030 4 110785252815871414675023720827050214400 A 010 A 020 2 A 030 4 100498327490375558552294537727836160 A 010 2 A 020 2 A 030 4 242069057439421506000892323698053638144 A 020 4 A 030 4 9365563284771282525661294453818654720 A 010 A 020 4 A 030 4 7788320451864006240385482253758627840 A 020 6 A 030 4 + 385941364525994295772737728437196160 A 030 5 204138771646548937762325946441793536 A 010 A 030 5 + 16433213056544072200544383653642240 A 010 2 A 030 5 18400419926960443438644889807292020224 A 020 2 A 030 5 66998884993583705701529691818557440 A 010 A 020 2 A 030 5 1560927214128547087610215742303109120 A 020 4 A 030 5 31176920932369883573792905111928832 A 030 6 + 7174804938471160634211630034452480 A 010 A 030 6 11166480832263950950254948636426240 A 020 2 A 030 6 + 985763576825292281656496168632320 A 030 7 ,
H 4 = 221218352160 + 731888205624 A 010 3274050925314 A 010 2 + 3705930423855 A 010 3 1504278394767 A 010 4 + 2964082653 A 010 5 + 125620783551 A 010 6 14983447554 A 010 7 + 6193484383608 A 020 2 8340759404082 A 010 A 020 2 22638714256422 A 010 2 A 020 2 + 57508838332749 A 010 3 A 020 2 47758958765523 A 010 4 A 020 2 + 17472871138743 A 010 5 A 020 2 2173513442409 A 010 6 A 020 2 179418733128 A 010 7 A 020 2 + 35274035939904 A 020 4 97259857756002 A 010 A 020 4 + 636147513486 A 010 2 A 020 4 + 261086437048113 A 010 3 A 020 4 359696560295817 A 010 4 A 020 4 + 215772452693217 A 010 5 A 020 4 63839679086979 A 010 6 A 020 4 + 8051372602398 A 010 7 A 020 4 + 54041325463008 A 020 6 165699813295512 A 010 A 020 6 + 33204719595258 A 010 2 A 020 6 + 460180940964507 A 010 3 A 020 6 757292594763861 A 010 4 A 020 6 + 527204513374623 A 010 5 A 020 6 173484957871755 A 010 6 A 020 6 + 21845866533732 A 010 7 A 020 6 + 714639390760 A 030 3954719109708 A 010 A 030 + 6330620684763 A 010 2 A 030 3928882015764 A 010 3 A 030 + 737702588403 A 010 4 A 030 + 112140546390 A 010 5 A 030 24972412590 A 010 6 A 030 480704260662 A 020 2 A 030 26779482155124 A 010 A 020 2 A 030 + 80008978158693 A 010 2 A 020 2 A 030 85292733754620 A 010 3 A 020 2 A 030 + 40291787129697 A 010 4 A 020 2 A 030 7390087811514 A 010 5 A 020 2 A 030 60915893184 A 010 6 A 020 2 A 030 31796207028342 A 020 4 A 030 10161191049804 A 010 A 020 4 A 030 + 294127655276781 A 010 2 A 020 4 A 030 523370096940852 A 010 3 A 020 4 A 030 + 388246832456751 A 010 4 A 020 4 A 030 136688635109862 A 010 5 A 020 4 A 030 + 19858055051394 A 010 6 A 020 4 A 030 55233271098504 A 020 6 A 030 + 22136479730172 A 010 A 020 6 A 030 + 460180940964507 A 010 2 A 020 6 A 030 1009723459685148 A 010 3 A 020 6 A 030 + 878674188957705 A 010 4 A 020 6 A 030 346969915743510 A 010 5 A 020 6 A 030 + 50973688578708 A 010 6 A 020 6 A 030 998437719666 A 030 2 + 3096671171301 A 010 A 030 2 3028096214442 A 010 2 A 030 2 + 1019258483994 A 010 3 A 030 2 27890122095 A 010 4 A 030 2 14983447554 A 010 5 A 030 2 6621988031622 A 020 2 A 030 2 + 34774719861879 A 010 A 020 2 A 030 2 54117192208698 A 010 2 A 020 2 A 030 2 + 34636122388926 A 010 3 A 020 2 A 030 2 8755138483911 A 010 4 A 020 2 A 030 2 + 296811924264 A 010 5 A 020 2 A 030 2 3457746740322 A 020 4 A 030 2 + 109056291168483 A 010 A 020 4 A 030 2 283572390076974 A 010 2 A 020 4 A 030 2 + 277915273616538 A 010 3 A 020 4 A 030 2 121414926704805 A 010 4 A 020 4 A 030 2 + 20929574030526 A 010 5 A 020 4 A 030 2 + 3689413288362 A 020 6 A 030 2 + 153393646988169 A 010 A 020 6 A 030 2 504861729842574 A 010 2 A 020 6 A 030 2 + 585782792638470 A 010 3 A 020 6 A 030 2 289141596452925 A 010 4 A 020 6 A 030 2 + 50973688578708 A 010 5 A 020 6 A 030 2 + 466978687857 A 030 3 933190268148 A 010 A 030 3 + 528955995006 A 010 2 A 030 3 68735004300 A 010 3 A 030 3 2774712510 A 010 4 A 030 3 + 4831643800503 A 020 2 A 030 3 14722618186188 A 010 A 020 2 A 030 3 + 14246364724218 A 010 2 A 020 2 A 030 3 5072319256428 A 010 3 A 020 2 A 030 3 + 363633189840 A 010 4 A 020 2 A 030 3 + 13341114508671 A 020 4 A 030 3 67879940374116 A 010 A 020 4 A 030 3 + 98999775198414 A 010 2 A 020 4 A 030 3 57298958882100 A 010 3 A 020 4 A 030 3 + 12222829449810 A 010 4 A 020 4 A 030 3 + 17043738554241 A 020 6 A 030 3 112191495520572 A 010 A 020 6 A 030 3 + 195260930879490 A 010 2 A 020 6 A 030 3 128507376201300 A 010 3 A 020 6 A 030 3 + 28318715877060 A 010 4 A 020 6 A 030 3 101551098303 A 030 4 + 121990806297 A 010 A 030 4 31871161935 A 010 2 A 030 4 + 924904170 A 010 3 A 030 4 1463891403051 A 020 2 A 030 4 + 2842783709499 A 010 A 020 2 A 030 4 1570127337639 A 010 2 A 020 2 A 030 4 + 187456955400 A 010 3 A 020 2 A 030 4 6061982838705 A 020 4 A 030 4 + 17560187642997 A 010 A 020 4 A 030 4 15158932029405 A 010 2 A 020 4 A 030 4 + 4272705923850 A 010 3 A 020 4 A 030 4 9349291293381 A 020 6 A 030 4 + 32543488479915 A 010 A 020 6 A 030 4 32126844050325 A 010 2 A 020 6 A 030 4 + 9439571959020 A 010 3 A 020 6 A 030 4 + 10545786495 A 030 5 6288151338 A 010 A 030 5 + 554942502 A 010 2 A 030 5 + 221959852533 A 020 2 A 030 5 250524764730 A 010 A 020 2 A 030 5 + 50740569504 A 010 2 A 020 2 A 030 5 + 1241360850195 A 020 4 A 030 5 2132416578438 A 010 A 020 4 A 030 5 + 894227072886 A 010 2 A 020 4 A 030 5 + 2169565898661 A 020 6 A 030 5 4283579206710 A 010 A 020 6 A 030 5 + 1887914391804 A 010 2 A 020 6 A 030 5 467064225 A 030 6 + 102767130 A 010 A 030 6 16255592649 A 020 2 A 030 6 + 7109971992 A 010 A 020 2 A 030 6 124646789979 A 020 4 A 030 6 + 103768106778 A 010 A 020 4 A 030 6 237976622595 A 020 6 A 030 6 + 209768265756 A 010 A 020 6 A 030 6 + 6851142 A 030 7 + 408671568 A 020 2 A 030 7 + 5151316662 A 020 4 A 030 7 + 9988965036 A 020 6 A 030 7 ,
H 5 = 26047403632588800 + 62283999673710144 A 010 457203483658618416 A 010 2 + 802068495449351130 A 010 3 651126352309712091 A 010 4 + 249098613258091716 A 010 5 19318764392183268 A 010 6 16129408037673384 A 010 7 + 4412436251425983 A 010 8 311465669010246 A 010 9 + 826744476573935712 A 020 2 1515596159606865552 A 010 A 020 2 3656053627391992410 A 010 2 A 020 2 + 13957013723046354162 A 010 3 A 020 2 17793702513143509428 A 010 4 A 020 2 + 11556821802995711586 A 010 5 A 020 2 3942230326032786678 A 010 6 A 020 2 + 531397507902744186 A 010 7 A 020 2 + 47650118230995876 A 010 8 A 020 2 14320653571649790 A 010 9 A 020 2 + 6838374750025360968 A 020 4 24571305393662550168 A 010 A 020 4 + 13446722048105843172 A 010 2 A 020 4 + 64096289141188739832 A 010 3 A 020 4 142982026721362172106 A 010 4 A 020 4 + 137982371823677645442 A 010 5 A 020 4 74348866747077492960 A 010 6 A 020 4 + 23074743966668144028 A 010 7 A 020 4 3754387579296012642 A 010 8 A 020 4 + 218150645127858594 A 010 9 A 020 4 + 20080850316820245504 A 020 6 89973550913773306176 A 010 A 020 6 + 107994130891684926102 A 010 2 A 020 6 + 114396829990826733378 A 010 3 A 020 6 464388625027240942068 A 010 4 A 020 6 + 578354138708740960302 A 010 5 A 020 6 388834440573414221262 A 010 6 A 020 6 + 152667927380636526762 A 010 7 A 020 6 33573242649902998356 A 010 8 A 020 6 + 3276205405828876134 A 010 9 A 020 6 + 17151446953326830976 A 020 8 80048998096790498784 A 010 A 020 8 + 97703751139075013544 A 010 2 A 020 8 + 132343912278512832690 A 010 3 A 020 8 535337458608086504091 A 010 4 A 020 8 + 708217483790272026690 A 010 5 A 020 8 504976296508333723440 A 010 6 A 020 8 + 205925672850387910992 A 010 7 A 020 8 45066566307116336589 A 010 8 A 020 8 + 4087052508752448012 A 010 9 A 020 8 + 75618825564986048 A 030 4656698209411648 A 010 A 030 + 1318506735620216682 A 010 2 A 030 1427248597195074240 A 010 3 A 030 + 774848118804073056 A 010 4 A 030 179111153159893368 A 010 5 A 030 5225619601213200 A 010 6 A 030 + 7711919648564580 A 010 7 A 030 726753227690574 A 010 8 A 030 41875284719667600 A 020 2 A 030 5263932835992481164 A 010 A 020 2 A 030 + 21018793002371036082 A 010 2 A 020 2 A 030 33208996980791086740 A 010 3 A 020 2 A 030 + 26826017487736141602 A 010 4 A 020 2 A 030 11613444242562198900 A 010 5 A 020 2 A 030 + 2369071039539461490 A 010 6 A 020 2 A 030 67458762534157236 A 010 7 A 020 2 A 030 28167892478038206 A 010 8 A 020 2 A 030 7428103935467459112 A 020 4 A 030 + 2119056281708309064 A 010 A 020 4 A 030 + 86672105911672999848 A 010 2 A 020 4 A 030 228903371022856518828 A 010 3 A 020 4 A 030 + 267536187132742189674 A 010 4 A 020 4 A 030 171031064014255130928 A 010 5 A 020 4 A 030 + 61854844330798091748 A 010 6 A 020 4 A 030 11635680985426711116 A 010 7 A 020 4 A 030 + 799885698802148178 A 010 8 A 020 4 A 030 30510114216864644160 A 020 6 A 030 + 70806748390788195972 A 010 A 020 6 A 030 + 128438842322716610562 A 010 2 A 020 6 A 030 654935734180473985116 A 010 3 A 020 6 A 030 + 1008529381769682596814 A 010 4 A 020 6 A 030 808881789016010805876 A 010 5 A 020 6 A 030 + 368606518904713287762 A 010 6 A 020 6 A 030 92098347183306160812 A 010 7 A 020 6 A 030 + 10041118334646986214 A 010 8 A 020 6 A 030 26682999365596832928 A 020 8 A 030 + 65135834092716675696 A 010 A 020 8 A 030 + 132343912278512832690 A 010 2 A 020 8 A 030 713783278144115338788 A 010 3 A 020 8 A 030 + 1180362472983786711150 A 010 4 A 020 8 A 030 1009952593016667446880 A 010 5 A 020 8 A 030 + 480493236650905125648 A 010 6 A 020 8 A 030 120177510152310230904 A 010 7 A 020 8 A 030 + 12261157526257344036 A 010 8 A 020 8 A 030 143575491157645968 A 030 2 + 633583354199149566 A 010 A 030 2 1024879470264570870 A 010 2 A 030 2 + 779980753296234576 A 010 3 A 030 2 275846599444332420 A 010 4 A 030 2 + 29139466716573264 A 010 5 A 030 2 + 4111298959155120 A 010 6 A 030 2 692145931133880 A 010 7 A 030 2 1405496174700299706 A 020 2 A 030 2 + 9607762837519840422 A 010 A 020 2 A 030 2 21774003308430402924 A 010 2 A 020 2 A 030 2 + 23306886013432080852 A 010 3 A 020 2 A 030 2 12970395634568003010 A 010 4 A 020 2 A 030 2 + 3545849583724359042 A 010 5 A 020 2 A 030 2 310820889911636052 A 010 6 A 020 2 A 030 2 17831765654836056 A 010 7 A 020 2 A 030 2 871060518903758508 A 020 4 A 030 2 + 36847401297164213256 A 010 A 020 4 A 030 2 134482393356114213144 A 010 2 A 020 4 A 030 2 + 73454589500810364 A 010 3 A 020 4 A 030 2 161710234641117618408 A 010 4 A 020 4 A 030 2 + 70043507245526365188 A 010 5 A 020 4 A 030 2 15491174491697465988 A 010 6 A 020 4 A 030 2 + 1260425949627627432 A 010 7 A 020 4 A 030 2 + 11602901586742184646 A 020 6 A 030 2 + 47493618218202162582 A 010 A 020 6 A 030 2 345343317495646690404 A 010 2 A 020 6 A 030 2 + 702090132683197950972 A 010 3 A 020 6 A 030 2 700078914070994307690 A 010 4 A 020 6 A 030 2 + 380987873921274679746 A 010 5 A 020 6 A 030 2 110446055183571713676 A 010 6 A 020 6 A 030 2 + 13671493935743125368 A 010 7 A 020 6 A 030 2 + 10855972348786112616 A 020 8 A 030 2 + 44114637426170944230 A 010 A 020 8 A 030 2 356891639072057669394 A 010 2 A 020 8 A 030 2 + 786908315322524474100 A 010 3 A 020 8 A 030 2 841627160847222872400 A 010 4 A 020 8 A 030 2 + 480493236650905125648 A 010 5 A 020 8 A 030 2 140207095177695269388 A 010 6 A 020 8 A 030 2 + 16348210035009792048 A 010 7 A 020 8 A 030 2 + 94616234261801406 A 030 3 304504138258287912 A 010 A 030 3 + 356164972648830216 A 010 2 A 030 3 183286917965521584 A 010 3 A 030 3 + 36395171348162616 A 010 4 A 030 3 620161629086556 A 010 5 A 030 3 323001434529144 A 010 6 A 030 3 + 1385939476816652214 A 020 2 A 030 3 6087491097901497756 A 010 A 020 2 A 030 3 + 9708389340720128676 A 010 2 A 020 2 A 030 3 7312605525185682168 A 010 3 A 020 2 A 030 3 + 2650562235241850970 A 010 4 A 020 2 A 030 3 365408125727432292 A 010 5 A 020 2 A 030 3 + 1472845625257608 A 010 6 A 020 2 A 030 3 + 5026169743727691096 A 020 4 A 030 3 34536327707029476132 A 010 A 020 4 A 030 3 + 77120578657923663708 A 010 2 A 020 4 A 030 3 80652365244227044224 A 010 3 A 020 4 A 030 3 + 43559476666524346140 A 010 4 A 020 4 A 030 3 11619304626309521148 A 010 5 A 020 4 A 030 3 + 1131151493255563080 A 010 6 A 020 4 A 030 3 + 5797143221722087590 A 020 6 A 030 3 80715281755790308500 A 010 A 020 6 A 030 3 + 243942448062202501356 A 010 2 A 020 6 A 030 3 322706520279398345400 A 010 3 A 020 6 A 030 3 + 218538460521020039850 A 010 4 A 020 6 A 030 3 75629359102190826492 A 010 5 A 020 6 A 030 3 + 10853756738188727832 A 010 6 A 020 6 A 030 3 + 4901626380685660470 A 020 8 A 030 3 79309253127123926532 A 010 A 020 8 A 030 3 + 262302771774174824700 A 010 2 A 020 8 A 030 3 374056515932099054400 A 010 3 A 020 8 A 030 3 + 266940687028280625360 A 010 4 A 020 8 A 030 3 93471396785130179592 A 010 5 A 020 8 A 030 3 + 12715274471674282704 A 010 6 A 020 8 A 030 3 32450534093177415 A 030 4 + 76868572425088428 A 010 A 030 4 62150051322476748 A 010 2 A 030 4 + 19248377856243768 A 010 3 A 030 4 1702051282878570 A 010 4 A 030 4 53833572421524 A 010 5 A 030 4 620117509835760048 A 020 2 A 030 4 + 1964138307087356874 A 010 A 020 2 A 030 4 2236908094564719258 A 010 2 A 020 2 A 030 4 + 1119501339095052270 A 010 3 A 020 2 A 030 4 219604384906033500 A 010 4 A 020 2 A 030 4 + 8407421157693852 A 010 5 A 020 2 A 030 4 3282313509036732366 A 020 4 A 030 4 + 14406794568961407522 A 010 A 020 4 A 030 4 22422072017080626192 A 010 2 A 020 4 A 030 4 + 16101017887676012100 A 010 3 A 020 4 A 030 4 5385641248045817640 A 010 4 A 020 4 A 030 4 + 640985846178152412 A 010 5 A 020 4 A 030 4 7057300339008631224 A 020 6 A 030 4 + 42309141982778725398 A 010 A 020 6 A 030 4 83566714131810916290 A 010 2 A 020 6 A 030 4 + 75138997028592122910 A 010 3 A 020 6 A 030 4 32345006145277990500 A 010 4 A 020 6 A 030 4 + 5537064652066401300 A 010 5 A 020 6 A 030 4 6609104427260327211 A 020 8 A 030 4 + 43717128629029137450 A 010 A 020 8 A 030 4 93514128983024763600 A 010 2 A 020 8 A 030 4 + 88980229009426875120 A 010 3 A 020 8 A 030 4 38946415327137574830 A 010 4 A 0 20 8 A 030 4 + 6357637235837141352 A 010 5 A 020 8 A 030 4 + 6396218688994776 A 030 5 10624653613105560 A 010 A 030 5 + 5351133244526496 A 010 2 A 030 5 850379819632884 A 010 3 A 030 5 + 17944524140508 A 010 4 A 030 5 + 155594379157647930 A 020 2 A 030 5 355736728154963412 A 010 A 020 2 A 030 5 + 272943854785152342 A 010 2 A 020 2 A 030 5 76904568972100188 A 010 3 A 020 2 A 030 5 + 5359473167586300 A 010 4 A 020 2 A 030 5 + 1067611679230014234 A 020 4 A 030 5 3299299462277955216 A 010 A 020 4 A 030 5 + 3542919371357270076 A 010 2 A 020 4 A 030 5 1582905863125885284 A 010 3 A 020 4 A 030 5 + 238798648576174428 A 010 4 A 020 4 A 030 5 + 2930747285901580038 A 020 6 A 030 5 11527573092502966164 A 010 A 020 6 A 030 5 + 15486368110035513174 A 010 2 A 020 6 A 030 5 8847407821682614212 A 010 3 A 020 6 A 030 5 + 1882416978346146228 A 010 4 A 020 6 A 030 5 + 2914475241935275830 A 020 8 A 030 5 12468550531069968480 A 010 A 020 8 A 030 5 + 17796045801885375024 A 010 2 A 020 8 A 030 5 10385710753903353288 A 010 3 A 020 8 A 030 5 + 2119212411945713784 A 010 4 A 020 8 A 030 5 729463314158604 A 030 6 + 770291007640992 A 010 A 030 6 209734213378680 A 010 2 A 030 6 + 11963016093672 A 010 3 A 030 6 23126694310657134 A 020 2 A 030 6 + 35984738436764310 A 010 A 020 2 A 030 6 15938516975012892 A 010 2 A 020 2 A 030 6 + 1759216136875848 A 010 3 A 020 2 A 030 6 200971208600510184 A 020 4 A 030 6 + 430234721396425116 A 010 A 020 4 A 030 6 288539739718121052 A 010 2 A 020 4 A 030 6 + 58652299650288456 A 010 3 A 020 4 A 030 6 661828757449878342 A 020 6 A 030 6 + 1771659646039177974 A 010 A 020 6 A 030 6 1511580111881849604 A 010 2 A 020 6 A 030 6 + 426476830963738968 A 010 3 A 020 6 A 030 6 692697251726109360 A 020 8 A 030 6 + 1977338422431708336 A 010 A 020 8 A 030 6 1730951792317225548 A 010 2 A 020 8 A 030 6 + 470936091543491952 A 010 3 A 020 8 A 030 6 + 45481663155384 A 030 7 26634233714580 A 010 A 030 7 + 2848337165160 A 010 2 A 030 7 + 1993039033187934 A 020 2 A 030 7 1821282030828684 A 010 A 020 2 A 030 7 + 332491176644328 A 010 2 A 020 2 A 030 7 + 22263401805115716 A 020 4 A 030 7 29859821032181076 A 010 A 020 4 A 030 7 + 9176890421473704 A 010 2 A 020 4 A 030 7 + 86791034490315822 A 020 6 A 030 7 147484976522215572 A 010 A 020 6 A 030 7 + 62091253978650936 A 010 2 A 020 6 A 030 7 + 94158972496748016 A 020 8 A 030 7 164852551649259576 A 010 A 020 8 A 030 7 + 67276584506213136 A 010 2 A 020 8 A 030 7 1394863856397 A 030 8 + 332306002602 A 010 A 030 8 88778814317784 A 020 2 A 030 8 + 34472146858866 A 010 A 020 2 A 030 8 1344376139736726 A 020 4 A 030 8 + 831240074408850 A 010 A 020 4 A 030 8 6292080932875704 A 020 6 A 030 8 + 5271437199254454 A 010 A 020 6 A 030 8 6868856318719149 A 020 8 A 030 8 + 5606382042184428 A 010 A 020 8 A 030 8 + 15824095362 A 030 9 + 1527285024594 A 020 2 A 030 9 + 33249602976354 A 020 4 A 030 9 + 198837156800790 A 020 6 A 030 9 + 207643779340164 A 020 8 A 030 9 .

References

  1. Poincaré, H. Mémoire sur les courbes définies par les équation différentielle. J. Mathématiques Pures Appliquée 1881, 7, 375–422. [Google Scholar]
  2. Hilbert, D. Mathematical problems. Bull. Am. Math. Soc. 1902, 8, 437–479. [Google Scholar] [CrossRef] [Green Version]
  3. Shi, S. A concrete example of the existence of four limit cycles for plane quadratic systems. Sci. Sin. 1980, 23, 153–158. [Google Scholar]
  4. Chen, L.; Wang, M. The relative position, and the number, of limit cycles of a quadratic differential system. Acta Math. Sin. 1979, 22, 751–758. [Google Scholar]
  5. Li, J.; Liu, Y. New results on the study of Zq-equivariant planar polynomial vector fields. Qual. Theory Dyn. Syst. 2010, 9, 167–219. [Google Scholar] [CrossRef]
  6. Li, C.; Liu, C.; Yang, J. A cubic system with 13 limit cycles. J. Differ. Equ. 2009, 246, 3609–3619. [Google Scholar] [CrossRef] [Green Version]
  7. Zhang, T.H.; Han, M.; Zang, H.; Meng, X.Z. Bifurcations of limit cycles for a cubic Hamiltonian system under quartic perturbations. Chaos Solitons Fractals 2004, 22, 1127–1138. [Google Scholar] [CrossRef]
  8. Wang, S.; Yu, P. Bifurcation of limit cycles in a quintic Hamiltonian system under sixth-order perturbation. Chaos Solitons Fractals 2005, 26, 1317–1335. [Google Scholar] [CrossRef]
  9. Wang, S.; Yu, P. Existence of 121 limit cycles in a perturbed planar polynomial Hamiltonian vector field of degree 11. Chaos Solitons Fractals 2006, 30, 606–621. [Google Scholar] [CrossRef]
  10. Du, C.; Liu, Y.; Huang, W. Limit cycles bifurcations for a class of Kolmogorov model in symmetrical vector field. Int. J. Bifurc. Chaos 2014, 24, 8. [Google Scholar] [CrossRef]
  11. Du, C.; Huang, W.; Zhang, Q. Center problem and the bifurcation of limit cycles for a cubic polynomial system. Appl. Math. Model. 2015, 39, 5200–5215. [Google Scholar] [CrossRef]
  12. Yu, P.; Han, M. Small limit cycles bifurcating from fine focus points in cubic order Z2-equivariant vector fields. Chaos Solitons Fractals 2005, 24, 329–348. [Google Scholar] [CrossRef]
  13. Wang, Q.; Liu, Y.; Du, C. Small limit cycles bifurcating from fine focus points in quartic order Z3-equivariant vector fields. J. Math. Anal. Appl. 2008, 337, 524–536. [Google Scholar] [CrossRef] [Green Version]
  14. Yao, W.H.; Yu, P. Bifurcation of small limit cycles in Z5-equivariant planar vector fields of order 5. J. Math. Anal. Appl. 2007, 328, 400–413. [Google Scholar] [CrossRef] [Green Version]
  15. Li, J.; Chan, H.S.Y.; Chung, K.W. Bifurcations of limit cycles in a Z6-equivariant planar vector field of degree 5. Sci. China Math. Phys. Astron. 2002, 45, 817–826. [Google Scholar]
  16. Li, J.; Zhang, M.Q. Bifurcations of limit cycles in a Z8-equivariant planar vector field of degree 7. J. Dyn. Differ. Equ. 2004, 16, 1123–1139. [Google Scholar] [CrossRef]
  17. Wang, S.; Yu, P.; Li, J. Bifurcation of limit cycles in a Z10-equivariant vector fields of degree 9. Int. J. Bifurc. Chaos Appl. Sci. Eng. 2006, 16, 2309–2324. [Google Scholar] [CrossRef] [Green Version]
  18. Huang, C.; Liu, H.; Shi, X.; Chen, X.; Xiao, M.; Wang, Z.; Cao, J. Bifurcations in a fractional-order neural network with multiple leakage delays. Neural Netw. 2020, 131, 115–126. [Google Scholar] [CrossRef] [PubMed]
  19. Huang, C.; Wang, J.; Chen, X.; Cao, J. Bifurcations in a fractional-order BAM neural network with four different delays. Neural Netw. 2021, 141, 344–354. [Google Scholar] [CrossRef] [PubMed]
  20. Xu, C.; Liao, M.; Li, P.; Guo, Y. Bifurcation properties for fractional order delayed BAM neural networks. Cogn. Comput. 2021, 13, 322–356. [Google Scholar] [CrossRef]
  21. Xu, C.; Mu, D.; Liu, Z.; Pang, Y. Comparative exploration on bifurcation behavior for integer-order and fractional-order delayed BAM neural networks. Nonlinear Anal. Model. Control. 2022, 27, 1–24. [Google Scholar] [CrossRef]
  22. Xu, C.; Mu, D.; Liu, Z.; Pang, Y.; Liac, M.; Aouiti, C. New insight into bifurcation of fractional-order 4D neural networks incorporating two different time delays. Commun. Nonlinear Sci. Numer. Simul. 2023, 118, 107043. [Google Scholar] [CrossRef]
  23. Dulac, H. Sur les cycles limites. Bull. Société Mathématique Fr. 1923, 51, 45–188. [Google Scholar] [CrossRef] [Green Version]
  24. Romanovski, V.G.; Shafer, D.S. Centers and limit cycles in polynomial systems of ordinary differential equations. Sch. Real Complex Singul. São Carlos 2016, 68, 267–373. [Google Scholar]
  25. Huang, W.; Gu, J.; Wang, Q. Limit cycles and isochronous centers of three dimensional differential systems. J. Guangxi Norm. Univ. Nat. Sci. Ed. 2022, 40, 104–126. [Google Scholar]
  26. Sanchez-Sanchez, I.; Torregrosa, J. Hopf bifurcation in 3-dimensional polynomial vector fields. Commun. Nonlinear Sci. Numer. Simul. 2022, 105, 106068. [Google Scholar] [CrossRef]
  27. Gu, J.; Zegeling, A.; Huang, W. Bifurcation of Limit Cycles and Isochronous Centers on Center Manifolds for a Class of Cubic Kolmogorov Systems in R 3. Qual. Theory Dyn. Syst. 2023, 22, 42. [Google Scholar] [CrossRef]
  28. Lu, J.; Wang, C.; Huang, W.; Wang, Q. Local Bifurcation and Center Problem for a More Generalized Lorenz System. Qual. Theory Dyn. Syst. 2022, 21, 96. [Google Scholar] [CrossRef]
  29. Guo, L.; Yu, P.; Chen, Y. Twelve limit cycles in 3D quadratic vector fields with Z3 symmetry. Int. J. Bifurc. Chaos 2018, 28, 1850139:1–1850139:14. [Google Scholar] [CrossRef] [Green Version]
  30. Guo, L.; Yu, P.; Chen, Y. Bifurcation analysis on a class of three-dimensional quadratic systems with twelve limit cycles. Appl. Math. Comput. 2019, 363, 12. [Google Scholar] [CrossRef]
  31. Hassard, B.D.; Kazarinoff, N.D.; Wan, Y.H. Theory and Applications of Hopf Bifurcation; CUP Archive: Cambridge, UK, 1981. [Google Scholar]
  32. Liu, L.; Aybar, O.O.; Romanovski, V.G.; Zhang, W. Identifying weak foci and centers in the Maxwell–Bloch system. J. Math. Anal. Appl. 2015, 430, 549–571. [Google Scholar] [CrossRef]
  33. Llibre, J.; Makhlouf, A.; Badi, S. 3-dimensional Hopf bifurcation via averaging theory of second order. Discret. Contin. Dyn. Syst.-Ser. A (DCDS-A) 2009, 25, 1287. [Google Scholar] [CrossRef]
  34. Barreira, L.; Llibre, J.; Valls, C. Bifurcation of limit cycles from a 4-dimensional center in Rm in resonance 1: N. J. Math. Anal. Appl. 2012, 389, 754–768. [Google Scholar] [CrossRef] [Green Version]
  35. Buică, A.; García, I.A.; Maza, S. Existence of inverse Jacobi multipliers around Hopf points in R3: Emphasis on the center problem. J. Differ. Equ. 2012, 252, 6324–6336. [Google Scholar] [CrossRef] [Green Version]
  36. Buică, A.; García, I.A.; Maza, S. Multiple Hopf bifurcation in R3 and inverse Jacobi multipliers. J. Differ. Equ. 2014, 256, 310–325. [Google Scholar] [CrossRef]
  37. Tian, Y.; Yu, P. An explicit recursive formula for computing the normal form and center manifold of general n-dimensional differential systems associated with Hopf bifurcation. Int. J. Bifurc. Chaos 2013, 23, 1350104. [Google Scholar] [CrossRef]
  38. Edneral, V.F.; Mahdi, A.; Romanovski, V.G.; Shafer, D.S. The center problem on a center manifold in R3. Nonlinear Anal. Theory Methods Appl. 2012, 75, 2614–2622. [Google Scholar] [CrossRef]
  39. García, I.A.; Maza, S.; Shafer, D.S. Cyclicity of polynomial nondegenerate centers on center manifolds. J. Differ. Equ. 2018, 265, 5767–5808. [Google Scholar] [CrossRef]
  40. Wang, Q.; Liu, Y.; Chen, H. Hopf bifurcation for a class of three-dimensional nonlinear dynamic systems. Bull. Des Sci. Mathématiques 2010, 134, 786–798. [Google Scholar] [CrossRef] [Green Version]
  41. Llibre, J.; Zhang, X. Invariant algebraic surfaces of the Lorenz system. J. Math. Phys. 2002, 43, 1622–1645. [Google Scholar] [CrossRef]
  42. Li, J. Hilbert’s 16th problem and bifurcations of planar polynomial vector fields. Int. J. Bifurc. Chaos Appl. Sci. Eng. 2003, 13, 47–106. [Google Scholar] [CrossRef] [Green Version]
  43. Du, C.; Wu, X.; Peng, Y. The limit cycles bifurcation of cubic system with equivariant symmetric structure. Nat. Sci. J. Xiangtan Univ. 2009, 31, 12. [Google Scholar]
  44. Wang, Q.; Huang, W. The equivalence between singular point quantities and Liapunov constants on center manifold. Adv. Differ. Equ. 2012, 78, 12. [Google Scholar] [CrossRef] [Green Version]
  45. Du, C.; Liu, Y.; Huang, W. A class of three-dimensional quadratic systems with ten limit cycles. Int. J. Bifurc. Chaos 2016, 26, 1650149:1–1650149:11. [Google Scholar] [CrossRef]
  46. Huang, W.; Wang, Q.; Chen, A. Hopf bifurcation and the centers on center manifold fora class of three-dimensional circuit system. Math. Methods Appl. Sci. 2020, 43, 1988–2000. [Google Scholar] [CrossRef]
  47. Llibre, J.; Zhang, X. Darboux theory of integrability in Cn taking into account the multiplicity. J. Differ. Equ. 2009, 246, 541–551. [Google Scholar] [CrossRef] [Green Version]
Figure 1. Phase portrait of (9), The blue line is the trajectory of the initial point ( x 1 , y 1 , u 1 ) = ( 0.05 , 0.02 , 0 ) , the yellow line is the trajectory of the initial point ( x 1 , y 1 , u 1 ) = ( 0.07 , 0.03 , 0.01 ) and the red line is the trajectory of the initial point ( x 1 , y 1 , u 1 ) =(−0.1,−0.1,−0.01).
Figure 1. Phase portrait of (9), The blue line is the trajectory of the initial point ( x 1 , y 1 , u 1 ) = ( 0.05 , 0.02 , 0 ) , the yellow line is the trajectory of the initial point ( x 1 , y 1 , u 1 ) = ( 0.07 , 0.03 , 0.01 ) and the red line is the trajectory of the initial point ( x 1 , y 1 , u 1 ) =(−0.1,−0.1,−0.01).
Mathematics 11 02563 g001
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Huang, T.; Gu, J.; Ouyang, Y.; Huang, W. Bifurcation of Limit Cycles and Center in 3D Cubic Systems with Z3-Equivariant Symmetry. Mathematics 2023, 11, 2563. https://doi.org/10.3390/math11112563

AMA Style

Huang T, Gu J, Ouyang Y, Huang W. Bifurcation of Limit Cycles and Center in 3D Cubic Systems with Z3-Equivariant Symmetry. Mathematics. 2023; 11(11):2563. https://doi.org/10.3390/math11112563

Chicago/Turabian Style

Huang, Ting, Jieping Gu, Yuting Ouyang, and Wentao Huang. 2023. "Bifurcation of Limit Cycles and Center in 3D Cubic Systems with Z3-Equivariant Symmetry" Mathematics 11, no. 11: 2563. https://doi.org/10.3390/math11112563

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop