Characterization of Positive Invariance of Quadratic Convex Sets for Discrete-Time Systems Using Optimization Approaches
Abstract
:1. Introduction
2. Mathematical Preliminaries
2.1. Discrete-Time Dynamical Systems
2.2. Convex Sets
2.3. Lagrange Function
2.4. Wolfe Dual Theory
2.5. Slater Condition
3. Invariance Conditions for Ellipsoids
3.1. Formulation of Positive Invariance Conditions
3.2. Lagrange Dual
3.3. Wolfe Dual Forms
4. Positive Invariance Conditions for Lorenz Cone
5. Numerical Examples
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bitsoris, G.; Gravalou, E. Design techniques for the control of discrete-time systems subject to state and control constraints. IEEE Trans. Autom. Control 1999, 44, 1057–1061. [Google Scholar] [CrossRef]
- Si, X.; Yang, H. Constrained regulation problem for continuous-time stochastic systems under state and control constraints. J. Vib. Control 2022, 28, 3218–3230. [Google Scholar] [CrossRef]
- Huff, D.D.; Fiacchini, M.; da Silva, J.M.G. Stability and Stabilization of Sampled-data Systems Subject to Control Input Saturation: A Set Invariant Approach. IEEE Trans. Autom. Control 2021, 67, 1423–1429. [Google Scholar] [CrossRef]
- Si, X.; Yang, H.; Ivanov, I.G. Conditions and a computation method of the constrained regulation problem for a class of fractional-order nonlinear continuous-time systems. Int. J. Appl. Math. Comput. Sci. 2021, 31, 17–28. [Google Scholar]
- Alikakos, N.D.; Phillips, D. A remark on positively invariant regions for parabolic systems with an application arising in superconductivity. Q. Appl. Math. 1987, 45, 75–80. [Google Scholar] [CrossRef]
- Bitsoris, G. On the positive invariance of polyhedral sets for discrete-time systems. Syst. Control Lett. 1988, 11, 243–248. [Google Scholar] [CrossRef]
- Lin, Z.; Saberi, A.; Stoorvogel, A.A. Semiglobal stabilization of linear discrete-time systems subject to input saturation, via linear feedback-an ARE-based approach. IEEE Trans. Autom. Control 1996, 41, 1203–1207. [Google Scholar]
- Riah, R.; Fiacchini, M. New condition for invariance of ellipsoidal sets for discrete-time saturated systems. In Proceedings of the 2015 IEEE Conference on Control Applications (CCA), Sydney, NSW, Australia, 21–23 September 2015; pp. 1856–1861. [Google Scholar]
- Zhou, B.; Duan, G.R.; Lin, Z. Approximation and Monotonicity of the Maximal Invariant Ellipsoid for discrete-time Systems by Bounded Controls. IEEE Trans. Autom. Control 2010, 55, 440–446. [Google Scholar] [CrossRef]
- Song, Y. Construction of lorenz cone with invariant cone using dikin ellipsoid for dynamicalal systems. arXiv 2022, arXiv:2206.11957. [Google Scholar]
- Li, D.; Lu, J.; Wu, X.; Chen, G. Estimating the ultimate bound and positively invariant set for the Lorenz system and a unified chaotic system. J. Math. Anal. Appl. 2006, 323, 844–853. [Google Scholar] [CrossRef]
- Liao, X.; Fu, Y.; Xie, S. On the new results of global attractive set and positive invariant set of the Lorenz chaotic system and the applications to chaos control and synchronization. Sci. China Ser. F Inf. Sci. 2005, 48, 304–321. [Google Scholar] [CrossRef]
- Cheng, G.; Mu, X. Finite-time stability with respect to a closed invariant set for a class of discontinuous systems. Appl. Math. Mech. 2009, 30, 1069–1075. [Google Scholar] [CrossRef]
- Blanchini, F. Set invariance in control. Automatica 1999, 35, 1747–1767. [Google Scholar] [CrossRef]
- Ren, Y.; Er, M.J.; Sun, G. Switched systems with average dwell time: Computation of the robust positive invariant set. Automatica 2017, 85, 306–313. [Google Scholar] [CrossRef]
- Bitsoris, G.; Truffet, L. Positive invariance, monotonicity and comparison of nonlinear systems. Syst. Control Lett. 2011, 60, 960–966. [Google Scholar] [CrossRef]
- Hu, T.; Lin, Z. On the tightness of a recent set invariance condition under actuator saturation. Syst. Control Lett. 2003, 49, 389–399. [Google Scholar] [CrossRef]
- Rami, M.A.; Ayad, H.; Mesquine, F. Enlarging ellipsoidal invariant sets for constrained linear systems. Int. J. Innov. Comput. Inf. Control 2007, 3, 1097–1108. [Google Scholar]
- Horváth, Z.; Song, Y.; Terlaky, T. A novel unified approach to invariance conditions for a linear dynamicalal system. Appl. Math. Comput. 2017, 298, 351–367. [Google Scholar]
- Grossmann, I.E.; Kravanja, Z. Mixed-integer nonlinear programming techniques for process systems engineering. Comput. Chem. Eng. 1995, 19, 189–204. [Google Scholar] [CrossRef]
- Mai, T.; Mortari, D. Theory of functional connections applied to quadratic and nonlinear programming under equality constraints. J. Comput. Appl. Math. 2022, 406, 113912. [Google Scholar] [CrossRef]
- Xue, B.; Zhan, N. Robust Invariant Sets Computation for discrete-time Perturbed Nonlinear Systems. IEEE Trans. Autom. Control 2021, 67, 1053–1060. [Google Scholar] [CrossRef]
- Si, X.; Yang, H. Optimization approach to the constrained regulation problem for linear continuous-time fractional-order systems. Int. J. Nonlinear Sci. Numer. Simul. 2021, 22, 827–842. [Google Scholar] [CrossRef]
- Lei, Y.; Yang, H. Dual optimization approach to set invariance conditions for discrete-time dynamical systems. Opt. Eng. 2023. [Google Scholar] [CrossRef]
- Song, Y. Positive Invariance Condition for Continuous dynamicalal Systems Based on Nagumo Theorem. arXiv 2022, arXiv:2207.05429. [Google Scholar]
- Crema, A.; Loreto, M.; Raydan, M. Spectral projected subgradient with a momentum term for the Lagrangean dual approach. Comput. Oper. Res. 2007, 34, 3174–3186. [Google Scholar] [CrossRef]
- Wolfe, P. A duality theorem for non-linear programming. Q. Appl. Math. 1961, 19, 239–244. [Google Scholar] [CrossRef]
- Bazraa, M.S.; Sherali, H.D.; Shetty, C.M. Nonlinear Programming Theory and Algorithms; John Wiley & Sons: New York, NY, USA, 1993. [Google Scholar]
- Liu, X.; Liu, W.; Li, Y.; Zhuang, J. Finite-time H∞ control of stochastic time-delay Markovian jump systems. J. Shandong Univ. Sci. Technol. (Nat. Sci.) 2022, 41, 75–84. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, Y.; Yang, H.; Ivanov, I.G. Characterization of Positive Invariance of Quadratic Convex Sets for Discrete-Time Systems Using Optimization Approaches. Mathematics 2023, 11, 2419. https://doi.org/10.3390/math11112419
Lei Y, Yang H, Ivanov IG. Characterization of Positive Invariance of Quadratic Convex Sets for Discrete-Time Systems Using Optimization Approaches. Mathematics. 2023; 11(11):2419. https://doi.org/10.3390/math11112419
Chicago/Turabian StyleLei, Yuyao, Hongli Yang, and Ivan Ganchev Ivanov. 2023. "Characterization of Positive Invariance of Quadratic Convex Sets for Discrete-Time Systems Using Optimization Approaches" Mathematics 11, no. 11: 2419. https://doi.org/10.3390/math11112419
APA StyleLei, Y., Yang, H., & Ivanov, I. G. (2023). Characterization of Positive Invariance of Quadratic Convex Sets for Discrete-Time Systems Using Optimization Approaches. Mathematics, 11(11), 2419. https://doi.org/10.3390/math11112419