Perturbed Skew Diffusion Processes
Abstract
1. Introduction
2. Perturbed Diffusion Process
3. Skew Diffusion Process
4. Perturbed Skew Diffusion Process
5. Conclusions and Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Itô, K.; McKean, H.P. Diffusion Processes and Their Sample Paths; Springer: Berlin/Heidelberg, Germany, 1965. [Google Scholar]
- Walsh, J.B. A diffusion with a discontinuous local time. Asterisque 1978, 52–53, 37–45. [Google Scholar]
- Harrison, J.M.; Shepp, L.A. On skew Brownian motion. Ann. Probab. 1981, 9, 309–313. [Google Scholar] [CrossRef]
- Le Gall, J.F. One-dimensional stochastic differential equations involving the local times of the unknown process. In Stochastic Analysis and Applications, Proceedings of the International Conference Held in Swansea, 11–15 April 1983; Lecture Notes in Math.; Springer: Berlin/Heidelberg, Germany, 1984; Volume 1095, pp. 51–82. [Google Scholar]
- Ramirez, J.M. Multi-skewed Brownian motion and diffusion. Proc. Am. Math. Soc. 2010, 139, 3739–3752. [Google Scholar] [CrossRef]
- Lejay, A. On the construction of the skew Brownian motion. Probab. Surv. 2006, 3, 413–466. [Google Scholar] [CrossRef]
- Decamps, M.; Goovaerts, M.; Schoutens, W. Asymmetric skew Bessel processes and their applications to finance. J. Comput. Appl. Math. 2006, 186, 130–147. [Google Scholar] [CrossRef]
- Lejay, A.; Martinez, M. A scheme for simulating one-dimensional diffusion processes with discontinuous coefficients. Ann. Appl. Probab. 2006, 16, 107–139. [Google Scholar] [CrossRef]
- Freidlin, M.; Sheu, S.J. Diffusion processes on graphs: Stochastic differential equations, large deviation priciple. Probab. Theory Relat. 2000, 116, 181–220. [Google Scholar] [CrossRef]
- Carmona, P.; Petit, F.; Yor, M. Some extentions of the arcsine law as partial consequences of the scaling property of Brownian motion. Probab. Theory Relat. 1994, 100, 1–29. [Google Scholar] [CrossRef]
- Carmona, P.; Petit, F.; Yor, M. Beta variables as times spent in [0,∞) by certain perturbed Brownian motions. J. Lond. Math. Soc. 1998, 58, 239–256. [Google Scholar] [CrossRef]
- Chaumont, L.; Doney, R.A. Pathwise uniqueness for perturbed versions of Brownian motion and reflected Brownian motion. Probab. Theory Relat. 1999, 113, 519–534. [Google Scholar] [CrossRef]
- Chaumont, L.; Doney, R.A. Some calculations for doubly perturbed Brownian motion. Stoch. Proc. Appl. 2000, 85, 61–74. [Google Scholar] [CrossRef]
- Gall, J.F.L.; Yor, M. Excursions browniennes et carrés de processus de Bessel. C. R. Acad. Sci. Paris Série I 1986, 303, 73–76. [Google Scholar]
- Gall, J.F.L.; Yor, M. Enlacements du mouvement brownien autour des courbes de l’espace. Trans. Am. Math. Soc. 1990, 317, 687–722. [Google Scholar]
- Perman, M.; Werner, W. Perturbed Brownian motions. Probab. Theory Relat. 1997, 108, 357–383. [Google Scholar] [CrossRef]
- Doney, R.A.; Zhang, T. Perturbed Skorohod equations and perturbed reflected diffusion. Ann. I’HPoincaré-PR 2005, 41, 107–121. [Google Scholar] [CrossRef]
- Hu, L.; Ren, Y. Doubly perturbed neutral stochastic functional equations. J. Comput. Appl. Math. 2009, 231, 319–326. [Google Scholar] [CrossRef]
- Lions, P.L.; Sznitman, A.S. Stochastic differential equations with reflecting boundary conditions. Comm. Pur. Math. Soc. 1984, 37, 511–537. [Google Scholar] [CrossRef]
- Engelbert, H.J.; Schmidt, W. Strong Markov continuous local martingales and solutions of one-dimensional stochastic differential equations (Part III). Math. Nachr. 1991, 151, 149–197. [Google Scholar] [CrossRef]
- Protter, P. Stochastic Integration and Differential Equations; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Salins, M.; Spiliopoulos, K. Markov processes with spatial delay: Path space characterization, occupation time and properties. Stoch. Dyn. 2017, 17, 1750042. [Google Scholar] [CrossRef]
- Karatzas, I.; Shreve, S.E. Brownian Motion and Stochastic Calculus; Springer: Berlin/Heidelberg, Germany, 1991. [Google Scholar]
- Revuz, D.; Yor, M. Continuous Martingales and Brownian Motion; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, Y.; Zhang, H. Perturbed Skew Diffusion Processes. Mathematics 2023, 11, 2417. https://doi.org/10.3390/math11112417
Tian Y, Zhang H. Perturbed Skew Diffusion Processes. Mathematics. 2023; 11(11):2417. https://doi.org/10.3390/math11112417
Chicago/Turabian StyleTian, Yingxu, and Haoyan Zhang. 2023. "Perturbed Skew Diffusion Processes" Mathematics 11, no. 11: 2417. https://doi.org/10.3390/math11112417
APA StyleTian, Y., & Zhang, H. (2023). Perturbed Skew Diffusion Processes. Mathematics, 11(11), 2417. https://doi.org/10.3390/math11112417